Voting Dilemmas: Is Democracy a Mathematical Farce?

Dr. Adam Graham-Squire

High Point University

October 6, 2016

"It's not the voting that's democracy; it's the counting." -Tom Stoppard

Outline

- 2 Preference Ballots and Schedules
- Basic Methods of Finding a Winner
- 4 Fairness Criterion
- 5 Our research

Presidential Election, 2016

- Many voters are not excited about either major-party nominee
- Voting for other parties (Libertarian, Green, Communist, The Rent is Too Damn High) is effectively throwing your vote away
- Wish there were a more effective way of expressing preferences

A Better Way of Voting–Ranking Candidates

- No run-off votes, all candidates on ballot at the same time
- Voters rank all of the candidates instead of just voting for top choice
- Greater information allows for better/more choices in elections

- 2 Preference Ballots and Schedules
- 3 Basic Methods of Finding a Winner
- 4 Fairness Criterion
- 5 Our research

Preference Ballots

(

- Instead of voting for one person, each voter gives a ranking of the options.
- Suppose four candidates: Adam, Bernie, Clinton, and Donald (A, B, C, and D).

Preference Schedules

- Preference ballots are compiled and arranged into preference schedules.
- Sample preference schedule:

Number of voters	14	10	8	4	1
1st choice	А	С	D	В	С
2nd choice	В	В	С	D	D
3rd choice	С	D	В	С	В
4th choice	D	А	А	А	А

Means 14 voters voted A B C D, 10 voters voted C B D A, etc.

- Preference Ballots and Schedules
- Basic Methods of Finding a Winner
- 4 Fairness Criterion
- 5 Our research

Plurality Method

- Whoever has the most first-place votes wins the election. Do <u>not</u> need a majority.
- This is effectively the system we have for most elections in the U.S. (with run-offs in some cases)

Number of voters	14	10	8	4	1
1st choice	Α	С	D	В	С
2nd choice	В	В	С	D	D
3rd choice	С	D	В	С	В
4th choice	D	А	А	А	А

• For

The Plurality winner is A, with 14 first-place votes. Next highest is C, with 11.

Borda Count Method

- Each candidate is given points for each ranking: 4 points for 1st place, 3 for 2nd, 2 for 3rd, 1 for 4th.
- Points are added up and the candidate with the most points wins the election.
- This is the system used for college football polls, also for other sports awards (Heisman trophy) and hiring decisions.

Borda Count Example

Number of voters	14	10	8	4	1
1st choice	Α	С	D	В	С
2nd choice	В	В	С	D	D
3rd choice	С	D	В	С	В
4th choice	D	А	А	А	А

- Candidate A has 14 first place votes, 23 4th place votes. Total for A: $(14 \times 4) + (23 \times 1)=79$ points.
- Candidate B: $(4 \times 4) + (24 \times 3) + (9 \times 2) = 106$ points.
- Candidate C gets 104 points, D gets 81 points.
- The Borda Count winner is Candidate B.

Instant Runoff Method

- Election has multiple 'run-off' elections. After first vote, candidate with lowest number of first-place votes is eliminated- their votes are added to next candidate.
- Process is repeated, with one candidate eliminated in each round.
- Run-off ends when one candidate has a majority of first-place votes.
- Used in some municipal elections in the US (esp. Bay area), also parliament in Australia.
- Allows for 3rd party candidates without causing a spoiler effect (Here's looking at you, Ralph Nader).

Instant Runoff Example

Number of voters	14	10	8	4	1
1st choice	A	С	D	В	С
2nd choice	В	В	С	D	D
3rd choice	C	D	В	С	В
4th choice	D	А	А	А	А

• Candidate B has lowest number of first place votes and is eliminated from preference schedule in round 1. New preferences are:

Number of voters	14	10	8	4	1
1st choice	A	С	D	D	С
2nd choice	С	D	С	С	D
3rd choice	D	А	А	А	А

Dr. Adam Graham-Squire Voting Dilemmas: Is Democracy a Mathematical Farce?

Instant Runoff Example, cont.

Number of voters	14	10	8	4	1
1st choice	А	С	D	D	С
2nd choice	С	D	С	С	D
3rd choice	D	А	А	А	А

• D now has 12 first place votes, so C is eliminated in round 2 (only 11 first-place votes).

Number of voters	14	10	8	4	1
1st choice	Α	D	D	D	D
2nd choice	D	А	Α	Α	Α

• Candidate D wins the election in round 3.

Method of Pairwise Comparisons

- Each candidate is compared head-to-head with each other candidate. If a candidate wins a head-to-head matchup, they get a point.
- After all head-to-head matchups are tabulated, candidate with highest number of points wins the election.

Pairwise Comparison Example

Number of voters	14	10	8	4	1
1st choice	Α	С	D	В	С
2nd choice	В	В	С	D	D
3rd choice	С	D	В	С	В
4th choice	D	А	А	А	А

- A vs B: B wins 23-14. 1 point for B.
- A vs C: C wins 23-14. 1 point for C.
- A vs D: D wins 23-14. 1 point for D.
- C vs B: C wins 19-18. 1 point for C.
- C vs D: C wins 25-12. 1 point for C.
- D vs B: B wins 28-9. 1 point for B.
- C wins the election with a total of 3 points.

Summary of Methods

- With Plurality Method, A wins.
- With Borda Count, B wins.
- With Instant Runoff, D wins.
- With Pairwise Comparison, C wins (in fact, C beats every other candidate in a head-to-head competition).
- So, selection of winner of ranked election can depend on the choice of vote-counting method.
- Note: There are many other voting methods (Schulze method, Approval Voting, Range Voting, Borda Count with Elimination, etc)

Outline

How did we get here?

Preference Ballots and Schedules

Basic Methods of Finding a Winner

4 Fairness Criterion

5 Our research

Majority Criterion

- Majority Criterion: If a candidate wins a majority of the first-place votes, that candidate should win the election.
- The Electoral College fails the Majority Criterion (much to Al Gore's chagrin)
- Borda Count fails the majority criterion. All other methods satisfy it.
- In the past, have had college football teams ranked #1 even though they received fewer first-place votes than another team.

Majority Criterion Failure Example

Number of voters	10	5	4
1st choice	А	С	С
2nd choice	С	В	А
3rd choice	В	А	В

- A gets 30+5+8= 43 points
- C gets 20+27= 47 points
- C wins the Borda count, even though a majority chose A for first place.

Pairwise Winner Criterion

- Pairwise Winner Criterion: If there is a candidate who beats all other candidates in a head-to-head competition, that candidate should win the election.
- Other than pairwise comparison, all other voting methods fail this criterion.
- Our original election exemplifies those failures; though C won the pairwise comparison, she would lose if we used any of the other methods.

Independence of Irrelevant Alternatives (IIA)

- Independence of Irrelevant Alternatives criterion states that should the following occur:
 - Ilection with a winner (say, C) and candidate B is a loser.
 - B drops out of the race, so we re-tally by eliminating B.
- Then the IIA criterion states that C should still be the winner.
- Pairwise comparison fails this criterion, and it is the only one that pairwise comparison fails.
- Electoral College also fails IIA, as Ralph Nader showed in 2000

IIA failure Example (part 1)

NFL Draft example:

Number of voters	2	6	4	1	1	4	4
1st choice	Α	В	В	С	С	D	Е
2nd choice	D	А	А	В	D	А	С
3rd choice	С	С	D	А	А	Е	D
4th choice	В	D	Е	D	В	С	В
5th choice	E	Е	С	Е	Е	В	А

- When do pairwise comparisons: A gets 3 points, 2.5 for B, 2 for C, 1.5 for D, 1 for E.
- So A wins the election.

IIA failure Example (part 2)

NFL Draft example: C decides at last minute to not enter the draft.

Number of voters	2	6	4	1	1	4	4
1st choice	Α	В	В	В	D	D	Е
2nd choice	D	А	А	А	А	А	D
3rd choice	В	D	D	D	В	Е	В
4th choice	E	Е	Е	Е	Е	В	А

- When do pairwise comparisons: A gets 2 points, 2.5 for B, 1.5 for D, 0 for E.
- So B wins the re-tally, even though an 'irrelevant' alternative was eliminated.

Monotonicity Criterion

- Monotonicity Criterion: Suppose the following occur:
 - **1** An election is held and a candidate (say, C) is the winner.
 - Some preference ballots are changed, but only in favor of C.
- Then the Monotonicity criterion states that C should still be the winner.
- The instant runoff method fails monotonicity, but all of the others satisfy it.

Monotonicity Criterion failure Example, pt 1

Straw poll results for Olympic host:

Number of voters	7	8	10	4
1st choice	A	В	С	А
2nd choice	В	С	А	С
3rd choice	C	А	В	В

- Round One: B is eliminated.
- C wins in round 2.

Monotonicity Criterion failure Example, pt 2

Straw poll results get out, and people in the last column change their choice *in favor of the winner*, *C*:

Number of voters	7	8	14
1st choice	Α	В	С
2nd choice	В	С	А
3rd choice	С	А	В

- Round One: A is eliminated.
- B wins in round 2.
- By changing their vote in favor of C, the voters actually caused C to lose!

Other Fairness Criterion

- Participation Criterion- The addition of more votes favoring a winner should not make that winner lose.
- Clone-proof Criterion- Addition of "similar" candidates does not affect the outcome of an election.
- Later-no-harm Criterion- Additional ranking or approval of less-preferred candidates will not cause a more-preferred candidate to lose.
- There are at least 12 more on Wikipedia alone, though many are similar.
- None of our current methods satisfy ALL criteria, so we need to find another method that *does*.

Arrow's Impossibility Theorem

• Arrow's Impossibility Theorem states:

"With three or more candidates and any number of voters, there <u>does not exist</u> a voting system that satisfies all of the fairness criterion and always produces a winner."

• Hence, democracy is a farce. We should all go home and cry.

With two caveats

Caveat One:

- Arrow's Impossibility Theorem only applies to certain kinds of voting methods that involve ranking
- Other voting methods (e.g. approval, range voting) do not fall under the impossibility theorem
- But they have problems of their own.

Caveat Two:

• Maybe fairness violations don't occur in real elections very often, if at all.

Outline

- 2 Preference Ballots and Schedules
- Basic Methods of Finding a Winner
- 4 Fairness Criterion

5 Our research

The big question

- Mathematically, there are problems with all voting systems
- Question: How often do these problems crop up in real-world elections?
- Specific question: How often do you have a Monotonicity Anomaly in Instant Runoff elections?
- Theoretical research (using fabricated "general" data) indicates that monotonicity violations should happen a lot-as high as 15% of the time
- Or very rarely-as low as 0.03% of the time
- Depends on whose research you believe

- Biggest problem is little data (Australia and Ireland are not sharing)
- Luckily, all of the data from San Francisco is freely available online
- Can use available voting data to check for Monotonicity anomalies

- David Naylor, Nick Zayatz and I worked on finding monotonicity anomalies
- Method:
 - Run IRV election to find winner
 - Ochange ballots by moving that winner up in certain ballots
 - 8 Rerun election to see if changes result in a different winner
- Analyzed over 100 elections: 62 had 3 or more candidates, 36 were competitive, 24 had potential Monotonicity Violations (by inspection)

Basic method

• Change one whole column of preference schedule:

# voters	7	8	10	4	# voters	7	8	14
1st	A	В	С	А	1st	Α	В	С
2nd	В	С	А	С	2nd	В	С	А
3rd	C	А	В	В	3rd	С	А	В

• Program found no monotonicity anomalies in any of the available data.

Better method

- Check all combinations of swaps
- "Advanced" program found no monotonicity anomalies. Then we realized it didn't actually check all combinations.
- Made new program that DID check all combinations (All-swaps program)
- All-swaps took too long to run-David estimated it would take 25 times the age of the universe to run the program for large data sets.
- We did not have 25 times the age of the universe

Approximation of Runs

 As many as 10¹⁶⁹ runs for All-swaps program on the Burlington, VT, data set.

Methods to speed up the program

- Depth-first approach: "Weighting" the columns in some way to find the most important switches.
- Result: Still took too long, got no results
- Greedy approach: First check columns that move votes from second-place finisher to winner.
- Result: No monotonicity anomalies from greedy approach
- Top-three approach: Run IRV election until only three candidates left, then do all-swaps
- Result: Fairly fast to run, no anomalies found

Even bigger problem

• Some monotonicity anomalies would not be found by all-swaps, even if it DID work.

Number of voters	22	21	14	15	30
1st choice	A	А	С	С	В
2nd choice	В	С	А	В	С
3rd choice	C	В	В	А	А

- Swapping all BCA votes to ABC \rightarrow A wins in first round.
- Swapping two BCA votes to ABC \rightarrow B drops out, gives 28 votes to C, C wins.

- Look for gaps between candidate votes as they drop out.
- If moving winner up can change order that candidates drop out, could result in monotonicity anomaly.

Number of voters	22	21	14	15	30
1st choice	A	А	С	С	В
2nd choice	В	С	А	В	С
3rd choice	C	В	В	А	А

 In example above, need two votes to change order, so program should only swap two votes

Top Three Smart Check

- Program runs IRV election to top three candidates, then calculates the "gap" in votes between 2nd and 3rd place (*n* votes)
- Program swaps winner higher in n + 1 ballots, then checks to see if winning candidate changes
- Top three smart check program found a monotonicity anomaly in one set of data, mayoral race in Burlington, VT.
- No other anomalies found in any other IRV elections

- Real-world anomalies do not seem to be as prevalent as theoretical data would indicate, but do exist.
- So all hope is not lost.
- But, though programs have not found other anomalies, some anomalies might exist

Current focus and future research

Future goals:

- Total smart check (may take too long), or at least Top Four
- No show paradox anomalies
- Approval voting comparison
- Independence of Irrelevant alternatives anomalies

Adam Graham-Squire High Point University agrahams@highpoint.edu

Outline

- 2 Preference Ballots and Schedules
- Basic Methods of Finding a Winner
- 4 Fairness Criterion
- 5 Our research

Recently in the news

- IRV is used in many municipal elections in the US.
- Recently there has been a backlash with some municipalities choosing to revoke IRV and go back to previous system.
- Interesting case in Burlington, Vermont election in 2009.

Burlington Election, 2009

- Initially 6 candidates, 2 had virtually no support, a third had a fair bit less than other three candidates. Lower three all get eliminated.
- In second round 3 candidates left were Bob Kiss (Progressive), Kurt Wright (Republican), and Andy Montroll (Democrat).
- First-place votes were W-3294, K-2981, M-2554
- Montroll is eliminated, 2/3 of his votes go to Kiss who wins in the third round.
- In a head-to-head, though, Montroll would have beat Kiss by a solid 8 percent.
- Controversy ensues, Burlington revokes IRV in 2010 by a vote of 52 percent to 48 percent.

Other voting methods - Easy

- Approval Voting- voter just says "Approve" or "Disapprove" for each candidate. All "approves" are tallied, candidate with most votes wins.
- Range voting- voter gives each candidate a score from 0 to 10. Like approval voting, but allows voters to discriminate more finely between those they approve and disapprove.
- There are 14 voting methods listed on Wikipedia. Paper by Warren Smith analyzes 40 different methods many are similar, though.

Other voting methods - Complicated

- Schulze Method- Candidates are compared head-to-head.
- A candidate who loses to another can still be considered to "beat" that candidate if there is a chain of preferences that allows it.
- Eliminate "rejects". This is a candidate A who is beat in a head-to-head by candidate B and there is no chain by which A can beat B.
- Process does NOT always result in a winner- some sort of runoff procedure is often necessary to winnow down to a single winner.
- Runoff procedure- Find "weakest pairwise defeat" and turn it into a tie, then repeat the process.

- Wikipedia "Voting System" page.
- Voting Systems paper by Paul Johnson (eventually to be a part of a textbook by Saul Stahl)
- Two websites that hate each other: fairvote.org (website promoting IRV) and rangevoting.org (website promoting range voting)