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Introduction

In this paper we analyze the differential operator d
dx + F : ℂ((x))n → ℂ((x))n, where F is an

n × n matrix with entries in ℂ((x)), so the entries are formal Laurent series. Our goal is to find
a basis under which F corresponds to a canonical form. The structure of the paper is based in
large part on [2], written in the more modern language of [1]. In particular we divide the main
calculation into 4 cases, depending on the size of F and the order of pole of F . We will prove not
only the existence and uniqueness of a canonical form, but also an algorithm to follow so as to
bring F to canonical form.

Statement of Theorem

We will use the convention that for a matrix M ∈Mnℂ((x)) with a pole of order k, we can write

M = M−kx
−k +M−k+1x

−k+1 + ⋅ ⋅ ⋅+M−1x
−1 +M0 +M1x+M2x

2 + ⋅ ⋅ ⋅

where Mℎ ∈ Mnℂ for all ℎ. With such convention in mind, our goal is to prove the following
theorem.

Theorem. For a given matrix F ∈ Mnℂ((x)), the operator d
dx + F : ℂ((x))n → ℂ((x))n can be

written in a canonical form d
dx + Ḟ . Here the basis for Ḟ lies in ℂ((x1/q))n and Ḟ ∈Mnℂ((x1/q)),

for some positive integer q ≤ n!, and Ḟℎ = 0 for all ℎ ≥ 0. Moreover, Ḟ is a block diagonal matrix

where each block of size m×m is of the form
u∑
i=1

bix
(−1− i

q
)
Im +

R

x
. Here Im is the m×m identity

matrix, bi ∈ ℂ, and all
u∑
i=1

bix
(−1− i

q
)

(which we often refer to as the “scalar terms”) are pairwise

distinct for different blocks. Also, R ∈ Mmℂ is in Jordan canonical form, and all eigenvalues
� = c+ d

√
−1 of R satisfy c ∈ [0, 1/q). The canonical form is unique up to the order of the blocks.

Method and Conventions

Our method will be to use a change of basis matrix G ∈ GLnℂ((x1/q)) to reduce d
dx + F

to a form d
dx + Ḟ . Specifically, we will apply a series of transitional change of basis matrices

G(i) ∈ GLnℂ((x1/q)) to a series of transitional operators d
dx + F(i) such that G−1(i) ( d

dx + F(i))G(i) =
d
dx + F(i+1). Letting F(1) = F and F(r) = Ḟ , we have G = G(1)G(2) . . . G(r) as our desired change
of basis matrix. The method then simplifies to just finding the transitional G(i) matrices. Unless
otherwise specified, for the sake of simplicity at each step we consider F to be our input matrix
and C our output matrix after G has been applied.

We begin by analyzing what happens to the operator d
dx + F when we conjugate it by G. Note

that G′ = dG
dx , and the product rule holds for matrices, i.e. d

dx(GH) = G′H +GH ′.
1
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Proposition. Applying a change of basis G to d
dx + F is equivalent to transforming the matrix

F into the matrix G−1G′ + G−1FG. Such a transformation F 7→ G−1G′ + G−1FG is called a
gauge transformation.

Proof.

[G−1(
d

dx
+ F )G](ℎ) = G−1

d

dx
[G(ℎ)] +G−1FG(ℎ)

= G−1(G
d

dx
(ℎ) +G′(ℎ) +G−1FG(ℎ)

=
d

dx
(ℎ) +G−1G′(ℎ) +G−1FG(ℎ)

= [
d

dx
+G−1G′ +G−1FG](ℎ)

□

We let

(1) G−1G′ +G−1FG = C

and multiply both sides of (1) by G to get

(2) G′ + FG = GC

Equation (2) is the main equation we will work with.

Before we start to look at cases, let us state some conventions that will simplify our calculations.
Frequently we can allow G to have no poles and let G0 = In. Thus we will often use

(3) G = In + xG1 + x2G2 + ⋅ ⋅ ⋅

and in this case

G′ = G1 + 2xG2 + 3x2G3 + ⋅ ⋅ ⋅

We will typically solve for G by equating coefficient matrices on both sides of (2). We first
equate coefficients of the xℎ term for the least value of ℎ, then proceed to higher values of ℎ. Thus
we solve first for G1, then G2, and so on to verify that an appropriate G can be found. Lastly, for
a matrix X with a block decomposition, Xrs will be the rs-block of X, Xℎ,rs is the rs-block of Xℎ,
and xij is the ij-entry of X unless otherwise specified.

We will now break the existence part of the proof of the Theorem into four cases and solve
each case in turn. Once we have verified the existence of the canonical form, we will construct an
algorithm and also prove uniqueness.

1. Case One: F has no poles

Claim 1.1. If F has no poles then there exists a G, given by (3), such that C = Ḟ = 0. In other
words, we can find a G such that (2) becomes

(4) G′ + FG = 0
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Proof. Here F = F0 + F1x+ F2x
2 + . . . , so equating coefficients in (4) gives

∙ Constant (x0) term: G1 + F0In = 0, therefore G1 = −F0.

∙ xℎ−1 term: Assuming that we have already determined Gi for all i < ℎ, we have

Gℎ = − 1

ℎ!

(
ℎ−1∑
i=0

FiGℎ−i−1

)
.

This gives a recursive method by which we can solve for an appropriate coefficient matrix Gℎ for
all ℎ, so we have found a G which satisfies (3). □

In case one, the Theorem is trivially satisfied since we let C = Ḟ = 0.

2. Case Two: n = 1

Claim 2.1. If n = 1 there exists a G, given by (3) and satisfying (2), such that Cℎ = Fℎ for all
ℎ < 0 and Cℎ = 0 for all ℎ ≥ 0.

Proof. Since n = 1, our matrices are abelian and (2) reduces to

(5) G′ + (F − C)G = 0

where G is a Taylor series and F and C are Laurent series with a pole of order k. If we let Fℎ = Cℎ

for all ℎ < 0 and Cℎ = 0 for all ℎ ≥ 0 then F − C =
∞∑
ℎ=0

Fℎ. This reduces (5) to case one and thus

the Theorem will be satisfied, with the exception that the coefficient R for the x−1 term may not
have the appropriate real part. This situation will be dealt with later in the paper. □

Remark: We note that if we make any gauge transformation with a constant matrix, G = G0,
where G0 is not necessarily equal to In, then G′ = 0 and (1) reduces to G−1FG = C. Therefore
we can assume without loss of generality that the leading coefficient matrix for F , call it F−k, is in
Jordan canonical form. Moreover, we can assume the Jordan blocks of F−k are arranged so that
all blocks with the same eigenvalue are next to one another, and we will refer to these (possibly
larger) blocks as spectral decomposition blocks. We will assume the convention that the spectral
decomposition block Ri will have the form

Ri =

⎡⎢⎢⎢⎢⎢⎣
�i 0 0 . . . 0
∗ �i 0 . . . 0

0 ∗ �i
. . .

...
...

. . .
. . .

. . . 0
0 . . . 0 ∗ �i

⎤⎥⎥⎥⎥⎥⎦
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where �i is an eigenvalue of F−k and the ∗ are either zero or one. From this point we will assume
that the leading coefficient matrix of F is in spectral decomposition form, unless otherwise stated.

It will often be convenient to let our leading coefficient matrix for C equal the leading coefficient
matrix for F . Thus if C−k = F−k, the calculation F−kGi − GiF−k will frequently occur. Let us
then consider the operator TF−k

: Mnℂ→Mnℂ, where TF−k
(X) = F−kX −XF−k.

Lemma 1. All eigenvalues of TF−k
are of the form �r − �s.

Proof. Assuming F−k has m distinct eigenvalues, we have

(6) F−k =

⎡⎢⎢⎢⎣
R1 0 . . . 0
0 R2 . . . 0
...

...
. . .

...
0 . . . 0 Rm

⎤⎥⎥⎥⎦ and X =

⎡⎢⎢⎢⎣
X11 X12 . . . X1m

X21 X22 . . . X2m
...

...
. . .

...
Xm1 Xm2 . . . Xmm

⎤⎥⎥⎥⎦
where X is decomposed into blocks of the same size as F−k. Now we calculate F−kX −XF−k =

(7)

⎡⎢⎢⎢⎣
R1X11 −X11R1 R1X12 −X12R2 . . . R1X1m −X1mRm
R2X21 −X21R1 R2X22 −X22R2 . . . R2X2m −X2mRm

...
...

. . .
...

RmXm1 −Xm1R1 RmX2m −X2mR2 . . . RmXmm −XmmRm

⎤⎥⎥⎥⎦
It suffices to prove the lemma for a single block of (7). Let us assume the rs-block of (7), RrXrs−
XrsRs, has dimensions nr × ns. Then the ij-entry of the block RrXrs −XrsRs will have the form

(RrXrs −XrsRs)ij = (�r − �s)xij + ∗xi+1,j − ∗xi,j+1

where x0j = xi,ns+1 = 0. Consider a new basis x̃ij for the rs-block of X, where

x̃ij = (�r − �s)xij + ∗xi+1,j − ∗xi,j+1

for all 1 ≤ i ≤ nr, 1 ≤ j ≤ ns. With respect to this new basis, the operator TF−k
can be viewed

as a change of basis matrix from the basis {xij} to the basis {x̃ij}. To conclude the proof of the
lemma, it suffices to show that such a matrix can be written as upper-triangular with �r − �s for
all of its diagonal entries. This is easy to see if we order the basis vectors correctly, which we shall
demonstrate with an example. Consider a 3× 2 rs-block, so RrXrs −XrsRs would look like

⎡⎣ (�r − �s)x11 − ∗x12 (�r − �s)x12
(�r − �s)x21 − ∗x22 + ∗x11 (�r − �s)x22 + ∗x12
(�r − �s)x31 − ∗x32 + ∗x21 (�r − �s)x32 + ∗x22

⎤⎦
We order our vectors by starting at the top of each column and moving down, beginning with the
right-most column and moving left. Thus our first vector is x̃12, the second is x̃22, and the last is
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x̃31. With respect to this ordering, the change of basis matrix from xij to x̃ij will be⎡⎢⎢⎢⎢⎢⎢⎣
(�r − �s) ∗ 0 −∗ 0 0

0 (�r − �s) ∗ 0 −∗ 0
0 0 (�r − �s) 0 0 −∗
0 0 0 (�r − �s) ∗ 0
0 0 0 0 (�r − �s) ∗
0 0 0 0 0 (�r − �s)

⎤⎥⎥⎥⎥⎥⎥⎦
In general, since each x̃ij only involves entries above and to the right of it, if we order the x̃ij and
xij appropriately (namely, starting at the upper-right and going down, then moving one column
left and repeating the process), the change of basis matrix from the xij-basis to the x̃ij-basis will
be upper triangular with diagonal entries equal to �r − �s. □

Corollary. TF−k
is an isomorphism from the subspace of off-block-diagonal matrices to itself.

Proof. For an off-diagonal block we have r ∕= s, thus �r − �s ∕= 0 so all of our eigenvalues are
nonzero. □

Lemma 2. Assume that for all r, s (�r − �s) /∈ ℤ − {0} and c ∈ ℤ − {0}. Then the operator
cIn×n+TF−k

: Mnℂ→Mnℂ defined by [cIn×n+TF−k
](X) = cX+F−kX−XF−k is an isomorphism

from Mnℂ to itself.

Proof. Given the conclusions of Lemma 1, we have that the eigenvalues of cIn×n + TF−k
will have

the form �r−�s+ c. By the assumptions of Lemma 2 the �r−�s+ c will all be nonzero, even when
r = s. It follows that cIn×n + TF−k

will be an isomorphism. □

Remark: Although the Corollary and Lemma 2 give us isomorphisms, we will only be using the
property that the given maps are surjective.

3. Case Three: F has a pole of order one.

Claim 3.1. Suppose F−1 (reduced to spectral decomposition form) has m distinct eigenvalues �i, 1 ≤
i ≤ m, and none of the eigenvalues of F−1 differ by a non-zero integer ((�r − �s) /∈ ℤ−{0}). Then
we can find a G, given by (3) and that satisfies (2), where C−1 = F−1.

Proof. Here we have

F−1 =

⎡⎢⎢⎢⎣
R1 0 . . . 0
0 R2 . . . 0
...

...
. . .

...
0 0 . . . Rm

⎤⎥⎥⎥⎦
So our calculations for (2) are as follows:

∙ x−1 term: Since G′ has no poles, we have

F−1 − C−1 = 0, therefore C−1 = F−1
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∙ xj term: We can assume that all Gℎ, 0 ≤ ℎ ≤ j have already been chosen to satisfy the
previous calculations up through the xj−1 term, so our calculation at this level gives

(j + 1)Gj+1 + F−1Gj+1 + F0Gj + F1Gj−1 + ⋅ ⋅ ⋅+ FjG0 = Gj+1C−1(
(j + 1)In×n + TF−1

)
(Gj+1) = M

Where M is equal to −(F0Gj + F1Gj−1 + ⋅ ⋅ ⋅ + FjG0). The conditions of Lemma 2 are
satisfied (with c = j + 1), so

(
(j + 1)In×n + TF−1

)
is surjective and we conclude that we

can choose entries for Gj+1 to satisfy the calculation for the xj term.

This gives a recursive method to choose values for all Gℎ so that G will satisfy (2) given the
conditions for claim 3.1. □

Claim 3.2. If F−1 has two blocks whose eigenvalues differ by a non-zero integer, we can apply a
G such that the larger eigenvalue can be reduced until the eigenvalues are equal.

Proof. We will illustrate the general method with the following specific case:

Subclaim 3.3. Given a diagonal F−1, we can apply a G (not given by (3)) which will reduce the
upper-left eigenvalue by one.

Proof. Here we have

F−1 =

⎡⎢⎢⎢⎣
�1 0 . . . 0

0 �2
. . .

...
...

. . .
. . . 0

0 . . . 0 �n

⎤⎥⎥⎥⎦

To this matrix we apply the change of basis

G =

⎡⎢⎢⎢⎣
x−1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

⎤⎥⎥⎥⎦
with

G−1 =

⎡⎢⎢⎢⎣
x 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

⎤⎥⎥⎥⎦ and G′ =

⎡⎢⎢⎢⎣
−x−2 0 . . . 0

0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

⎤⎥⎥⎥⎦
For our calculation we need only look at the first two coefficient matrices of F , so with

F =
1

x
F−1 + F0 + higher order terms

we have from (1)

G−1G′ +G−1
F−1
x
G+G−1F0G+G−1(h.o.t.)G = C
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or⎡⎢⎢⎢⎣
−x−1 0 . . . 0

0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
�1x
−1 0 . . . 0

0 �2x
−1 . . . 0

...
...

. . .
...

0 . . . 0 �nx
−1

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
f11 f12x . . . f1nx

f21x
−1 f22 . . . f2n

...
...

. . .
...

fn1x
−1 fn2 . . . fnn

⎤⎥⎥⎥⎦+ h.o.t. = C

where the fij are the entries of F0. Thus we conclude

C−1 =

⎡⎢⎢⎢⎣
(�1 − 1) 0 . . . 0
f21 �2 . . . 0
...

...
. . .

...
fn1 0 . . . �n

⎤⎥⎥⎥⎦
We have reduced the eigenvalue �1 by 1, and since C−1 is lower triangular, we can make another
change of basis to return C−1 to spectral decomposition form and the eigenvalues will not change.

□

In the general case, we will first arrange our blocks so that, given two blocks whose eigenvalues
differ by an integer, the block with the larger eigenvalue (call it R1) is in the upper left of F−1. We
then apply G given by

G =

[
x−1In1 0

0 In−n1

]
where R1 is of size n1× n1. This will reduce the eigenvalues of R1 by one, changing all eigenvalues
in the block at the same time. We may have fij entries below the diagonal that are pushed
forward from the F0 matrix, but we can return to spectral decomposition form (as described in
the subclaim) without affecting the eigenvalues. This process of applying G and then returning to
spectral decomposition form is repeated until the eigenvalues of the two blocks are equalized, at
which point they will form one larger spectral decomposition block. □

The process described in claim 3.2 can be repeated for all blocks in F−1 with eigenvalues differing
by integers. When all possible eigenvalues have been equalized, F−1 will have no eigenvalues
differing by non-zero integers, and we can apply claim 3.1.

Remark: It is not difficult to see that if one interchanges the matrices for G and G−1, the process
above serves to increase a particular eigenvalue by one. Therefore any eigenvalue of our leading
coefficient matrix has a real part that is unique only up to adding or subtracting an integer. It
follows that we can bring all eigenvalues to a form where the real part of each eigenvalue lies in
[0, 1), if we so choose. Moreover, if we extend to allow G ∈ GLnℂ((x1/q)) then a simple calculation
shows that one can use the process above to bring the real part of each eigenvalue to be in [0, 1/q).
We will use this fact in the conclusion of the paper to explain part of the unicity of the canonical
form.

This completes case 3, for C−1 is in Jordan canonical form, and by the remark above we can
assure that for all � = c + di we have c ∈ [0, 1). Thus, with q = 1, our blocks will have the form
R/x specified by the Theorem.

4. Case Four: F has a pole of order 2 or higher.

Goal. If F has a pole of order k, k ≥ 2, then we can find a G that will reduce F to a form which
can be solved by one of the previous cases.
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The goal will be broken into two claims. First we reduce to looking at a single spectral de-
coposition block and then show that such a block can be reduced in a manner consistent with the
goal.

Claim 4.1. There exists a gauge transformation which reduces F to a diagonal block formation.

Proof. We will find a change of basis matrix G such that when we apply G, F will be reduced
to block diagonal form, where the size of the blocks are determined by the size of the spectral
decomposition blocks of F−k. In previous calculations C−1 would always equal F−1, but in the case
of higher poles this will not in general work. For the following calculations, we make the following
assumptions:

∙ F−k has m distinct eigenvalues of multiplicity nr (so

m∑
r=1

nr = n).

∙ G is given by (3).

∙ Diagonal blocks of Gℎ will equal zero for ℎ ≥ 1 (Gℎ,rr = 0 for ℎ ≥ 1 and all r).

∙ All off-diagonal blocks of Cℎ be zero (Cℎ,rs = 0 for r ∕= s).

Thus only the off-diagonal blocks of G and the diagonal blocks of C are arbitrary and need to be
determined. With these conventions, let us calculate (2).

∙ x−k term: F−kG0 = G0C−k, so we have F−k = C−k

∙ x1−k term: F−kG1 + F1−kG0 = G1C−k +G0C1−k, thus

(8) F−kG1 −G1F−k + F1−kG0 − C1−k = 0

Let us consider what (8) looks like on a diagonal block and on an off-diagonal block.
Diagonal block: Each diagonal block of F−kG1 −G1F−k will be zero since Gℎ,rr = 0, for

ℎ ≥ 1. Then (8) will give F1−k,rr − C1−k,rr = 0 and since the diagonal block entries of Cℎ
are arbitrary we can choose appropriate values for C1−k,rr to satisfy the expression.

Off-diagonal block: Since the off-diagonal entries for C1−k are zero and G0 = In, the
off-diagonal blocks of (8) will simply be F−kG1 −G1F−k = −F1−k, or TF−k

(G1) = −F1−k.
It follows from the Corollary that we can find off-block-diagonal entries for G1 to satisfy
this expression.

∙ xt−k term, 1 < t < k: Assume we have already calculated values for Gi, i < t and Ci,
i < t− k. Then we still have no entries from G′, so (2) gives

F−kGt + F1−kGt−1 + ⋅ ⋅ ⋅+ Ft−kG0 = GtC−k + ⋅ ⋅ ⋅+G0Ct−k, or

(9) F−kGt −GtF−k +M − Ct−k = 0

Where M = F1−kGt−1 + ⋅ ⋅ ⋅+Ft−kG0−Gt−1C1−k−⋅ ⋅ ⋅−G1Ct−k−1. We can now make the
same diagonal and off-diagonal calculations for (9) as for (8), replacing M for F1−k, Gt for
G1 and Ct−k for C1−k. This satisfies (2) up through the xt−k term for 1 < t < k.

∙ xt−k term, t ≥ k: This calculation will be identical to the case where 1 < t < k, except
we will now have an entry coming from G′. This (t− k + 1)Gt−k+1 matrix will already be
determined by previous calculations, and we can add it into the matrix M and repeat the
process above to satisfy equation (2) at this level.
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This completes the calculation for claim 4.1, as we can recursively find matrices Gℎ and Cℎ−k to
solve equation (2). We have thus found G such that C is now a diagonal-block matrix. □

Once we have written F as a diagonal-block matrix, we have reduced our situation to the point
where we can look at each block individually. Thus the only calculation that remains is to show
that we can find a canonical form for F when we are given a single spectral decomposition block
for F−k. Our method for doing this will be to reduce a given block with pole of order 2 or higher
to a previously proved case. Specifically, we want to either break the given spectral decomposition
block into blocks of size 1× 1, reduce the order of pole to one or zero, or some combination of the
two. By induction, it suffices to show that we can either reduce the pole by an integer or break the
block into smaller blocks, since a finite number of applications will then reduce us to a situation
which can be solved by cases 1-3. It will not always be possible to make such a reduction on F
itself, so at times we may need to replace F with an equivalent matrix that can be reduced. The
details are explained in the following claim.

Claim 4.2. Given a spectral decomposition block F with a single eigenvalue �, size n ≥ 2, and a
pole of order k ≥ 2, we can bring F to a form C where one of two things will occur: C can be
decomposed into blocks of smaller dimension, or we can replace C with a matrix C̃ such that the
same G will bring both C and C̃ to canonical form but C̃ will either have a pole of integral order less
than C or C̃ can be decomposed into smaller blocks. We will refer to C̃ as an equivalent-reduction
matrix to C.

Proof. We will first change F to a different form, which we will call rational canonical form. Here we
use the fact that the transformation d

dx +F acts on the ℂ((x))[ ddx +F ]-module ℂ((x))n. According
to [1, Proposition 2.9 and Lemma 2.11], ℂ((x))n will have a cyclic vector e, and we can thus consider
the basis {e, ( d

dx + F )e, ( d
dx + F )2e, . . . , ( d

dx + F )n−1e}. After applying the appropriate G to bring
us to such a basis, the matrix F will have the form

(10) F =

⎡⎢⎢⎢⎢⎢⎣
0 0 . . . 0 −a0(x)
1 0 . . . 0 −a1(x)

0 1
. . .

... −a2(x)
...

. . .
. . . 0

...
0 . . . 0 1 −an−1(x)

⎤⎥⎥⎥⎥⎥⎦
where the 1’s are on the first subdiagonal and the ai(x) are the coefficients for the characteristic
polynomial of F :

yn + an−1(x)yn−1 + ⋅ ⋅ ⋅+ a1(x)y + a0(x)

Remark: Bringing F to rational canonical form may change the order of the pole of F , however
the induction process of reducing the order of pole or the size of the matrix will still apply.

If all of the ai(x) have either no pole or a pole of order 1, we can apply case 1 or case 3 and
reduce F to canonical form. Thus we assume that at least one ai(x) has a pole of order two or
higher.

We will now apply the diagonal transformation

G = ∣∣�ijx(i−1)t∣∣ =

⎡⎢⎢⎢⎢⎣
1 0 . . . 0

0 xt
. . .

...
...

. . .
. . . 0

0 . . . 0 x(n−1)t

⎤⎥⎥⎥⎥⎦
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to d
dx +F . For such a G, the transformation F 7→ G−1G′+G−1FG is called the shearing transfor-

mation. we calculate

(11) G−1G′ =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0 . . . 0

0 tx−1 0 . . .
...

0 0 2tx−1
. . .

...
...

...
. . .

. . . 0
0 0 . . . 0 t(n− 1)x−1

⎤⎥⎥⎥⎥⎥⎥⎦

and

(12) G−1FG =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 . . . 0 −a0(x) ⋅ x(n−1)t
x−t 0 . . . 0 −a1(x) ⋅ x(n−2)t

0 x−t
. . .

... −a2(x) ⋅ x(n−3)t
...

. . .
. . . 0

...
0 . . . 0 x−t −an−1(x)

⎤⎥⎥⎥⎥⎥⎥⎦
Note that (11) has a pole of only order one. Thus it will not affect any of our calculations on terms
of higher order poles, so we leave it out of the calculation to find ṫ. As usual, G−1G′+G−1FG = C.

Our first goal is to find the smallest value of t such that (12) will have a pole of order t. We write
ord(ai) for the order of pole of the Laurent series ai(x), with the convention that ord(ai) = −∞
if ai(x) has no poles. The pole of ai(x) ⋅ x(n−1−i)t will be of order ord(ai) − (n − 1 − i)t. The
condition that (12) have the smallest possible pole of order t is therefore equivalent to the system
of n inequalities

(13) ord(ai)− (n− 1− i)t ≤ t, for i = 0, 1, . . . , n− 1

and we choose ṫ to be the desired t-value, so

(14) ṫ = max

{
ord(ai)

n− i
, 1

}
i=0,1,...,n−1

Note that ṫ is defined, since by assumption at least one ai(x) has a pole of order two or higher. If
ṫ = 1 we can apply case 3 to G−1G′ +G−1FG and we will be finished, so we assume that ṫ > 1.

Letting t = ṫ, we have

(15) C =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 . . . 0 −a0(x) ⋅ x(n−1)ṫ
x−ṫ 0 . . . 0 −a1(x) ⋅ x(n−2)ṫ

0 x−ṫ
. . .

... −a2(x) ⋅ x(n−3)ṫ
...

. . .
. . . 0

...

0 . . . 0 x−ṫ −an−1(x)

⎤⎥⎥⎥⎥⎥⎥⎦+G−1G′

Where, by construction, at least one of the entries in the right-hand column has a pole of order
ṫ > 1, and all others have a pole of less than or equal to ṫ.

Our next goal is to show that we can reduce (15) by either decomposing it into submatrices
or replacing it by an equivalent-reduction matrix with a lower order of pole. First, consider the
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leading coefficient matrix of (15)

(16) C−ṫ =

⎡⎢⎢⎢⎢⎢⎣
0 0 . . . 0 c0
1 0 . . . 0 c1

0 1
. . .

... c2
...

. . .
. . . 0

...
0 . . . 0 1 cn−1

⎤⎥⎥⎥⎥⎥⎦
where, by construction, at least one of the ci is non-zero. Note that the G−1G′ has no impact on
(16) and C−ṫ is in rational canonical form over ℂ. Here we have two possibilities: (i) The matrix
(16) has more than one distinct eigenvalues, or (ii) The matrix (16) has exactly one eigenvalue.
Before analyzing these possibilities, let us first consider the relationship between the number of
distinct eigenvalues of C−ṫ the value of ṫ, and the entries of C−ṫ.

Lemma 3. If (16) has only one eigenvalue, �, then all entries ci are nonzero, � ∕= 0, and ṫ is an
integer.

Proof. Suppose (16) has only one eigenvalue, �. Then the characteristic equation for (16) will be

(17) (y − �)n = yn − n�yn−1 + ⋅ ⋅ ⋅+ (−1)n�n

where ci =
(
n
i

)
�n−i, for 0 ≤ i ≤ n − 1. Since each ci has � to some power greater than zero in

it, we have � = 0 if and only if ci = 0 for all i. Also � ∕= 0 if and only if ci ∕= 0 for all i, and by
assumption, at least one ci ∕= 0. Thus � ∕= 0 and ci ∕= 0 for all i. In particular, this means that all
the inequalities in (13) are in fact strict equalities for t = ṫ. Choosing i = n − 1 and t = ṫ, (14)
gives us ord(an−1) = ṫ. Since ord(an−1) is an integer, this proves the first part of Lemma 3. □

In situation (i), we convert (16) back to spectral decomposition form and apply claim 4.1. This
will break (16) into submatrices associated with the different eigenvalues as desired. However, this

means that ṫ may not be an integer. We know by construction that for some i, ṫ = ord(ai)
n−i ∈ ℚ,

so fractional exponents may thus be introduced, by necessity. Since all our previous calculations
involve integer exponents, some comments are in order regarding how our reduction will be done if
fractional exponents appear.

In the case where a fractional exponent, say xp/q, has been introduced we first make the change
of variable

� = x
1
q

Then we have
d�

dx
=

1

q
x(1−q)/q

and
d

dx
=

d

d�
⋅ 1

q
�1−q

In terms of the operator d
dx + F (x) (here we write the (x) to emphasize which variable we are

using), the change of variable will have the following effect:

d

dx
+ F (x) =

d

d�
⋅ 1

q
�1−q + F (� q)

=
1

q
�1−q

[
d

d�
+ F̂ (�)

](18)
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Here the entries in F̂ (�) will be Laurent polynomials.

Lemma 4. Suppose that G transforms ( d
dx +F ) to ( d

dx +C). Then for any scalar matrix �, G also

transforms �( d
dx + F ) to �( d

dx + C).

Proof. Since � is scalar, it will commute with G−1, thus

G−1�(
d

dx
+ F )G = �G−1(

d

dx
+ F )G = �(

d

dx
+ C)

□

We can now apply gauge transformations to (18) which will reduce d
d� + F̂ (�) to canonical form.

Once we have reduced F̂ (�) to canonical form Ḟ (�) we can return to the variable x by means of
the calculation

1

q
�1−q

[
d

d�
+ Ḟ (�)

]
=

d

d�
⋅ 1

q
�1−q +

1

q
�1−qḞ (� q)

=
d

dx
+

1

q
x(1−q)/qḞ (x1/q)

(19)

According to Lemma 4, (18), and (19), the same G which transforms d
d� + F̂ (�) to d

d� + Ḟ (�) will

also transform d
dx + F (x) to d

dx + 1
qx

(1−q)/qḞ (x1/q).

Lemma 5. If Ḟ (�) is in canonical form, then G−10 ( d
dx+1

qx
(1−q)/qḞ (x1/q))G0 will also be in canonical

form, where G0 is a gauge transformation which will assure that the coefficient matrix for x−1 is
in Jordan canonical form.

Proof.

Ḟ (�) =
u∑
i=1

b̃i�
(−1− 1

q̃
)
In +

R̃

�

so

1

q
x(1−q)/qḞ (x1/q) =

1

q
x(1−q)/q

(
u∑
i=1

b̃i(x
1/q)

(−1− 1
q̃
)
In +

R̃

x1/q

)

=
u∑
i=1

b̃i
q
x
(−1− 1

qq̃
)
In +

(1/q)R̃

x

Since R̃ is in Jordan canonical form, 1
q R̃ may not be in Jordan canonical form. We fix this by

applying a gauge transformation G0 which will bring 1
q R̃ to R, where R is in Jordan canonical

form. 1
q R̃ is lower triangular, so R and 1

q R̃ will have the same eigenvalues. Lastly, let bi = b̃i
q .

The bix
(−1− 1

qq̃
)
In terms will not be affected by the application of G0 since they are scalars and

thus will commute with G0. Multiplication by (1/q) will also preserve the pairwise distinctness of∑
b̃i(x

1/q), so
∑
bix

[−1−(1/qq̃)] +R/x will be in canonical form, proving Lemma 5. □

Now we consider situation (ii), when (16) has only one eigenvalue. If C−ṫ given by (16) has only

one eigenvalue, �, we will replace C with an equivalent-reduction matrix C̃ that will either have a
pole of order ṫ− j, (where j is a positive integer) or will decompose into smaller blocks. To finish
the proof of Claim 4.2 we need the following two subclaims:
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Subclaim 4.3. Suppose � ∈ ℂ, A, B̃ ∈ Mnℂ((x)), Ã = A − �In, and for some G we have

G−1( d
dx + Ã)G = d

dx + B̃. Then G−1( d
dx +A)G = d

dx + (B̃ + �In).

In our situation, if we let � = �x−ṫ then subclaim 4.3 implies that any G that will bring

C − �x−ṫIn to canonical form will also bring C to canonical form. Thus subclaim 4.3 allows us to

replace C with the equivalent-reduction matrix C̃ = C − �x−ṫIn.

Remark: The difference between the canonical forms of C and C̃ will be the scalar matrix �x−ṫIn.
These � form some (if not all) of the bi that show up in the Theorem. The relation between the
� and bi will be explained in more detail in the conclusion, however we point out here why the∑
bix

[−1−(i/q)] will be pairwise distinct for different blocks. Distinct blocks only occur when distinct
eigenvalues show up, thus for two different blocks at least one bi will be distinct.

Subclaim 4.4. The matrix C̃ = C − �x−ṫIn, after being brought to rational canonical form and
then applying the shearing transformation, will have a pole of lower order than C.

Once we have proved subclaim 4.4, there are two possibilities for the leading coefficient matrix of
C̃ after it has been put into rational canonical form and then applying the shearing transformation:
(I) It has more than one eigenvalue, in which case we break it into submatrices following the method
of situation (i), or (II) It has only one eigenvalue, in which case the lower pole is an integer strictly
less than ṫ and thus we have reduced the order of pole by an integer. In either case claim 4.2 is
proved. □

All that remains is to prove the two subclaims.

Proof of Subclaim 4.3. Since �In is a scalar matrix it will commute with all matrices. Thus

G−1
(
d

dx
+A

)
G = G−1

(
d

dx
+ (A− �In) + �In

)
G

= G−1
(
d

dx
+ Ã

)
G+ �In

=
d

dx
+ B̃ + �In

□

Proof of Subclaim 4.4. To prove this claim, it suffices to prove the following lemma.

Lemma 6. C̃ = C − �x−ṫIn has a rational canonical form

(20)

⎡⎢⎢⎢⎢⎢⎣
0 0 . . . 0 −ã0(x)
1 0 . . . 0 −ã1(x)

0 1
. . .

...
...

...
. . .

. . . 0 −ãn−2(x)
0 . . . 0 1 −ãn−1(x)

⎤⎥⎥⎥⎥⎥⎦
where the order of pole of ãi(x) is less than ṫ(n− i), for all i.

Lemma 6 gives ord(ãi) < ṫ(n− i), so for all i we have

ord(ãi)

n− i
< ṫ
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and we can apply the shearing transformation to (20) and choose a value t̃ = max
{

ord(ãi)
n−i , 1

}
that

will be strictly less than ṫ. Since ṫ is the order of pole of C, Lemma 6 proves subclaim 4.4. □

Proof of Lemma 6. By assumption, C has a leading matrix with a single eigenvalue �, and the
entries in the right hand column of C come from the coefficients of (y−�)n = yn−n�yn−1+ ⋅ ⋅ ⋅±�n.
Thus, with ṫ > 1 we have

C̃ = C − �x−ṫIn =

⎡⎢⎢⎢⎢⎢⎢⎣

−� 0 . . . 0 (−�)n

1 −� . . .
...

...

0 1
. . . 0

...
...

. . .
. . . −�

...
0 . . . 0 1 (n− 1)�

⎤⎥⎥⎥⎥⎥⎥⎦x
−ṫ + lower order terms

We will now construct the basis under which C̃ will be in rational canonical form. Let e be the
n× 1 vector

e =

⎛⎜⎜⎜⎝
1
0
...
0

⎞⎟⎟⎟⎠
Then

(
d

dx
+ C̃

)
e =

⎛⎜⎜⎜⎜⎜⎝
−�
1
0
...
0

⎞⎟⎟⎟⎟⎟⎠x−ṫ + lower order terms

and in general

(21)

(
d

dx
+ C̃

)i
e =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗
...
∗
1
0
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
x−iṫ + lower order terms, 0 ≤ i < n

where the 1 is in the ith position (considering the top entry as the zero entry), all entries below the
ith position are zero, and the *’s represent the coefficients of the expansion (�− 1)i.

We also have

(22)

(
d

dx
+ C̃

)n
e =

⎛⎜⎝0
...
0

⎞⎟⎠x−nṫ + lower order terms

The vectors in (21) form a basis, though (since together their leading coefficients would form an
upper-triangular matrix), and in this new basis we can write

(23)

(
d

dx
+ C̃

)n
e = ã0(x)e+ ã1(x)

(
d

dx
+ C̃

)
e+ ⋅ ⋅ ⋅+ ãn−1(x)

(
d

dx
+ C̃

)n−1
e
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for some ãi(x) ∈ ℂ((x)).

Remark: In particular, combining (22) and (23) illustrates that for each i, one of two things must

occur: Either ãi(x)
(
d
dx + C̃

)i
e has order of pole strictly less than nṫ or, if a pole of higher order

occurs, that pole is canceled by an equivalent pole from some other ãw(x)
(
d
dx + C̃

)w
e, w ∕= i, (or

sum thereof).

Proposition. If m = max{ord(ãi)− ṫ(n− i)}, then m < 0.

Proof. Suppose, for the sake of contradiction, that m ≥ 0. For at least one i we have ord(ãi) −
ṫ(n − i) = m. Let j be the largest value of i that satisfies ord(ãi) − ṫ(n − i) = m, and consider

ãj

(
d
dx + C̃

)j
e. We have that ord(ãj) = m+ ṫn− ṫj and the jth position of

(
d
dx + C̃

)j
e will be

x−jṫ + lower order terms

So the jth entry of ãj(x)
(
d
dx + C̃

)j
e will have order of pole

jṫ+m+ ṫn− jṫ = m+ ṫn

Therefore ord(ãj(
d
dx + C̃)je) ≥ ṫn, so by the remark above, the pole in the jth entry must be

canceled by an equivalent pole from some ãw

(
d
dx + C̃

)w
e, w ∕= j. However, for w < j there is a

zero in the jth position of
(
d
dx + C̃

)w
e, therefore no pole coming from any w < j could cancel the

pole at j. By assumption, we chose the largest value for j, thus there are no w > j that could
cancel the pole at j. We have arrived at a contradiction, so we conclude that m < 0. □

Since m < 0 and m is a maximum, we have ord(ãi) < ṫ(n− i) for all i. This concludes the proof
of Lemma 6. □

5. Structure of Algorithm

The algorithm below could be used to reduce F to canonical form. We use the indices r and s
to help reconstruct the blocks once we have reduced our calculations to applying cases 1, 2, or 3.
The algorithm ends when case 1, 2 or 3 is applied.

(1) If F has size n = 1, apply case 2.
(2) If F has order of pole k ≤ 1, apply either case 1 or case 3.
(3) Let r = 1 and s = 1.
(4) If F has size n ≥ 2 and pole of order k ≥ 2, then apply claim 4.1 to reduce F to block

diagonal form. This step reduces the algorithm to individual spectral decomposition blocks,
so the remaining steps only apply to individual blocks.

(5) Repeat steps 1 and 2 on the individual block. We can assume for all further steps that the
single block F has size n ≥ 2 and pole of order k ≥ 2.

(6) Change F to rational canonical form and repeat step 2.
(7) Apply the shearing transformation to F and call the new matrix C. Repeat step 2 for C.
(8) If the leading coefficient matrix for C, C−ṫ, has more than one eigenvalue, introduce the

change of variable �r = (�r−1)
1/qr . Here we use the conventions that �0 = x and q0 = 1.

Replace C with F (�r), increase the index r by one and repeat the process beginning with
step 4.
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(9) If C−ṫ has only one eigenvalue, �s, replace C with C̃ = C − �s�−ṫsrs . Increase the index of s

by one. Repeat the process beginning with step six, using F = C̃.

After following the algorithm up to this point, one can construct most of the structure of the
canonical form given by the Theorem. The final step to complete the canonical form is to apply
G such that all eigenvalues � of the various R have the property that Re(�) ∈ [0, 1/q). This is
explained below. First we describe the construction of an individual block. Suppose when a given
block reaches the point where we can apply case 1, 2 or 3 that it has indices r = w and s = v. When
we apply case 1, 2, or 3 and return to the variable x we will get a canonical form F̃ (x1/q1q2⋅⋅⋅qw).
To this we must add the scalar terms that were removed for this block at each step (9) of the

algorithm. These will have the form
∑v

s=1 �s�
−ṫs
rs In, and when written in terms of the variable x

they will look like

v∑
s=1

�s

(
x1/q1⋅⋅⋅qrs

)−ṫs
In

which simplifies to

(24)

v∑
s=1

�sx
(−1− 1+ṫs

q1⋅⋅⋅qrs
)
In

These terms will be combined with those from the canonical form F̃ (x1/q1q2⋅⋅⋅qw) to give us the
canonical form for the block.

The combination of (24) with F̃ (x1/q1q2⋅⋅⋅qw) will occur in different ways depending on whether
the last step was an application of case 1, 2 or 3.

∙ If case 1 was applied then F̃ (x1/q1q2⋅⋅⋅qw) = 0 and only the terms from (24) will make up
the canonical form.

∙ If case 2 was applied then R = F̃−1 and any other terms remaining from F̃ (x1/q1q2⋅⋅⋅qw) will
be added in to the scalar terms from (24).

∙ If case 3 was applied then F̃ (x1/q1q2⋅⋅⋅qw) = F̃−1 = R and the scalar terms from (24) will be
the scalar terms given in the Theorem.

The next to last step to get the canonical form given in the Theorem is that one must find the
lowest common denominator for all blocks to find the appropriate value of q ≤ n!, and then rewrite
all fractional exponents to correspond to q. Once this is done, one can apply the method of claim
3.2 to reduce or increase eigenvalues for the R matrices. We call this the last step in the algorithm:

Last Step of Algorithm: Applying an appropriate G ∈ GLnℂ((x1/q)) allows us to reduce or
increase eigenvalues of any R matrix by multiples of 1/q. Apply such G until all eigenvalues have
a real part that lies in [0, 1/q).

After this final step, the canonical form will be completely constructed from the algorithm. All
that remains is to confirm the uniqueness of the canonical form, up to permutations of the order
of the blocks.
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6. Uniqueness of the Canonical Form

Before we begin the proof of the uniqueness, we remark that the uniqueness is far from obvious.
Although the algorithm gives specific steps to follow, the construction of a cyclic vector in [1, Lemma
2.11] indicates that there are many possible choices for the construction of rational canonical form.

Thus it is believable that one could have two different canonical forms, say F̃ and Ḟ , that both
come from the same original F . We will show that this does not occur.

Claim 6.1. Suppose that for a given F we have Ḟ and F̃ both in canonical form, such that G−1( d
dx+

F̃ )G = d
dx + Ḟ . Then Ḟ and F̃ have identical blocks.

Proof. By assumption and (2), we have that

(25) G′ + F̃G = GḞ

Let G have pole of order v and let the maximum pole of F̃ and Ḟ have order k, and let us assume
that k > 1 (the k = 1 case will be dealt with in the course of our calculations). We assume without
loss of generality that we have integer exponents (the case of fractional exponents is dealt with

in a remark at the end of the section), and we use the notation that F̃ has blocks B̃g, where B̃g
has the form B̃g =

∑
b̃r,gx

−1−rIñg + R̃g/x (and similarly for Ḟ ). Thus F̃−k and Ḟ−k have block
decompositions

(26) F̃−k =

⎡⎢⎢⎢⎢⎣
B̃−k,1 0 . . . 0

0 B̃−k,2
. . .

...
...

. . .
. . . 0

0 . . . 0 B̃−k,m̃

⎤⎥⎥⎥⎥⎦ and Ḟ−k =

⎡⎢⎢⎢⎢⎣
Ḃ−k,1 0 . . . 0

0 Ḃ−k,2
. . .

...
...

. . .
. . . 0

0 . . . 0 Ḃ−k,ṁ

⎤⎥⎥⎥⎥⎦
where at least one of the B̃−k,i = b̃k−1,iIñi or Ḃ−k,j = ḃk−1,jIṅj is nonzero. Note that the block
decomposition is the one given by the canonical form (as opposed to spectral decomposition form

which we have used before), so we cannot assume that b̃k−1,i ∕= b̃k−1,p for i ∕= p (and the same holds

for ḃ).

Subclaim 6.2. b̃k−1,1 = ḃk−1,1. Also, G−v,i1 = 0 for all i such that b̃k−1,i ∕= b̃k−1,1 and G−v,1j = 0

for all j such that ḃk−1,j ∕= ḃk−1,1.

Proof. Equating coefficients in (25), we see that since there are initially no entries from the G′ term
we have

x−k−v term:

(27) F̃−kG−v = G−vḞ−k

Let G−v = ∣G−v,ij ∣ be an appropriate block decomposition of G−v. Then (27) reduces to
equations

(28) B̃−k,iG−v,ij = G−v,ijḂ−k,j

on blocks. By assumption, at least one G−v,ij is nonzero. Since the order of the blocks is irrelevant,

we assume that ∣gsu∣ = G−v,11 ∕= 0, which from (28) gives equations b̃k−1,1g−v,su = g−v,suḃk−1,1
where at least one g−v,su ∕= 0. Thus b̃k−1,1 = ḃk−1,1, which gives the first part of the subclaim. The
second part of the subclaim follows from making the same analysis as above by looking at (28) on
the entries where either i = 1 or j = 1 but i ∕= j. □
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Note that we cannot conclude at this point that the sizes of the blocks B̃−k,1 and Ḃ−k,1 are the
same. We can say that G−v,11 is an ñ1 × ṅ1 block, however, and later we will show that ñ1 = ṅ1

Subclaim 6.3. With the same notation as in subclaim 6.2, b̃ℎ,1 = ḃℎ,1 for all ℎ < k − 1. Also,

Gℎ−v,i1 = 0 for all i such that b̃k−1,i ∕= b̃k−1,1 and Gℎ−v,1j = 0 for all j such that ḃk−1,j ∕= ḃk−1,1.

Proof. We assume by induction that for all p > ℎ we have b̃p,1 = ḃp,1, Gp−v,i1 = 0 for all i such

that b̃k−1,i ∕= b̃k−1,1, and Gp−v,1j = 0 for all j such that ḃk−1,j ∕= ḃk−1,1. These ℎ values correspond

to xℎ−k−v terms in which the G′ does not contribute. Equating coefficient matrices for the xℎ−k−v

term gives

(29) F̃−kGℎ−v −Gℎ−vḞ−k + F̃1−kGℎ−v−1 −Gℎ−v−1Ḟ1−k + ⋅ ⋅ ⋅+ F̃ℎ−kG−v −G−vḞℎ−k = 0

In general, on a given block (29) gives

(30) B̃−k,iGℎ−v,ij −Gℎ−v,ijḂ−k,j + ⋅ ⋅ ⋅+ B̃ℎ−k,iG−v,ij −G−v,ijḂℎ−k,j = 0

In terms of the upper-left block, (30) gives

(31) B̃−k,1Gℎ−v,11 −Gℎ−v,11Ḃ−k,1 + ⋅ ⋅ ⋅+ B̃ℎ−k,1G−v,11 −G−v,11Ḃℎ−k,1 = 0

and the assumption that b̃p,1 = ḃp,1 for all p > ℎ reduces (31) to just B̃ℎ−k,1G−v,11−G−v,11Ḃℎ−k,1.
We can now follow the process of subclaim 6.2 to get the first part of the result. For the second
part of the subclaim, we note that the induction assumption (on blocks where i = 1 but j ∕= 1

and such that ḃk−1,j ∕= ḃk−1,1) reduces (30) to B̃−k,1Gℎ−v,1j − Gℎ−v,1jḂ−k,j = 0. From this we
easily conclude the result that Gℎ−v,1j = 0 (and the result that Gℎ−v,i1 = 0 is found in the same
manner). □

Subclaim 6.4. G−v,1j = G−v,i1 = 0 for all i, j.

Proof. We give the proof for G−v,1j , the other proof is similar. Suppose that for a given j, there

exists a p such that ḃp,1 = ḃp,j for all ℎ < p ≤ k− 1 and ḃℎ,1 ∕= ḃℎ,j . Then for the appropriate block,

(30) reduces to B̃ℎ−k,1G−v,1j − G−v,1jḂℎ−k,j = 0 from which we conclude that (since ḃℎ,1 ∕= ḃℎ,j)
we must have G−v,1j = 0. By the pairwise distinctness condition for the canonical form, such an ℎ
must exist for each j, which gives the result. □

Subclaim 6.5. G1j = Gi1 = 0 for all i, j, thus G has the form

G =

⎡⎢⎢⎢⎣
G11 0 . . . 0
0 ? . . . ?
...

...
. . .

...
0 ? . . . ?

⎤⎥⎥⎥⎦
Proof. We give the proof for G1j , the other half of the proof is similar. Specifically, we will show
that coefficient matrices Gp,1j equal zero for all p. Given the results of subclaim 6.4, (30) reduces
to

(32) B̃−k,iGℎ−v,ij −Gℎ−v,ijḂ−k,j + ⋅ ⋅ ⋅+ B̃ℎ−k−1,iG1−v,ij −G1−v,ijḂℎ−k−1,j = 0

We can now repeat the calculations of subclaims 6.3 and 6.4 to conclude that G1−v,1j = 0. By
induction, we conclude that Gp,1j = 0 for all p < k−1−v given the conditions for subclaim 6.3. For
all other values of p we must slightly change our calculations to allow for the terms coming from
G′. It is easy to see, however, that the terms coming from G′ will be canceled out (for example,
since G−v,1j = 0 for all j, the expression −vG−v,1j will have no effect on later calculations) and
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thus we have the same result, that Gp,1j = 0 for all p ≥ k − 1 − v. We conclude that G1j = 0 for
all j as desired. □

By induction and subclaim 6.5, we can infer that G has a block form where only the diagonal blocks
are nonzero. Since G is invertible, we conclude further that each diagonal block must be invertible,
thus the blocks Gii are square. It follows that the size of blocks for F̃ and Ḟ are the same.

Subclaim 6.6. The upper left eigenvalues �̃1 and �̇1 of R̃1 and Ṙ1 are equal. Also, v = 0.

Proof. For the upper left block of the x−v−1 term, we will have equation (31) (with ℎ = k − 2)

plus the terms coming from when ℎ = k − 1. Here we write B̃−1,11 = R̃1 (and similarly for Ṙ) to
coincide with our notation for the canonical form. We will then have

(33) B̃−k,1Gk−1−v,11 −Gk−1−v,11Ḃ−k,1 + ⋅ ⋅ ⋅+ R̃1G−v,11 −G−v,11Ṙ1 − vG−v,11 = 0

By the first part of subclaim 6.3 this reduces to just

(34) (R̃1 − v)G−v,11 −G−v,11Ṙ1 = 0

We recall that the R1 matrices are in Jordan canonical form, with the real part of all eigenvalues in
[0, 1). Without loss of generality, assume that the nonzero term of G−v,11 occurs in the upper left
block of G−v,11, asumming that G−v,11 is given a block decomposition to match the decomposition
of the Jordan forms of the R1 matrices. We can now make a calculation along the lines of those in
Lemmas 1 and 2 to find that �̃1 and �̇1 must satisfy the equation

�̃1 − �̇1 − v = 0

Now since v ∈ ℤ and �̃1, �̇1 ∈ [0, 1) we conclude that �̃1 = �̇1 and v = 0, thus G has no poles. □

Subclaim 6.7. R̃1 and Ṙ1 are equal.

Proof. G−1( d
dx + F̃ )G = d

dx + Ḟ if and only if d
dx + F̃ = G( d

dx + Ḟ )G−1. Thus there is a symmetry

in the role of G and G−1, and by subclaim 6.6 we can conclude that G−1 has no poles as well. It
then follows that the leading coefficient matrices of G and G−1 must be invertible. Thus G0,11 must
be invertible because of the block diagonal decomposition of G0, and we return to the calculation
(34). Now that we know that G0,11 is invertible, we can conclude that R̃1 and Ṙ1 are conjugate.
Since both are in Jordan canonical form, they must be equal. □

Together, subclaims 6.3 and 6.7 imply that the upper left blocks of F̃ and Ḟ are equal, and
we can use induction to conclude equality for all blocks. In the case of a fractional exponent with
denominator q, it is easy to see that the calculations on the scalar terms of the canonical form will
be no different. For our conclusions about the R matrices and the order of pole of G, we use the
fact that Re(�) ∈ [0, 1/q) for all eigenvalues to achieve the same results as above. This concludes
the proof of claim 6.1 in its full generality. □

Conclusion

This concludes our verification of the Theorem. We have shown that given an operator d
dx + F ,

we can write F in a canonical form. Moreover, we have constructed an algorithm for how to bring
F to canonical form, and shown that the choices made in the calculation of the algorithm are
unimportant in terms of the final product, as the canonical form is unique.
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