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Abstract

Much recent work has been done on the local Fourier transforms for connections on
the punctured formal disk. Specifically, the local Fourier transforms have been intro-
duced, shown to induce certain equivalences of categories, and explicit formulas have
been found to calculate them. In this paper, we prove analogous results in a similar
situation, the local Mellin transforms for connections on the punctured formal disk.
Specifically, we introduce the local Mellin transforms and show that they induce equiv-
alences between certain categories of vector spaces with connection and vector spaces
with invertible difference operators, as well as find formulas for explicit calculation in
the same spirit as the calculations for the local Fourier transforms.

1. Introduction

Recently, much research has been done on local Fourier transforms for connections on the punc-
tured formal disk. Namely, H. Bloch and H. Esnault in [BE04] and R. Garcia Lopez in [GL04]
introduce and analyse the local Fourier transforms. Explicit formulas for calculation of the local
Fourier transforms were proved independently by J. Fang in [Fan09] and C. Sabbah in [Sab08]
using different methods. In [Ari08], D. Arinkin gives a different framework for the local Fourier
transforms and also gives explicit calculation of the Katz-Radon transform. In [GS], we use
Arinkin’s techniques from [Ari08] to reproduce the calculations of [Fan09] and [Sab08]. The
global Mellin transform for connections on a punctured formal disk is given by Laumon in
[Lau96], but since that time little work has been done on the Mellin transform in this area.
In [Ari08, Section 2.5], Arinkin remarks that it would be interesting to apply his methods to
other integral transforms such as the Mellin transform. This paper is the answer to that query.
We introduce the local Mellin transforms on the punctured formal disk and prove results for
them which are analogous to those of the local Fourier transforms. One main difference between
the analysis of the local Fourier and local Mellin transforms is this- whereas the local Fourier
transforms deal only with differential operators, the local Mellin transforms input a differential
operator and output a difference operator.

The work done in this paper is as follows: after some preliminary definitions, we introduce the
local Mellin transforms M(0,∞), M(x,∞), and M(∞,∞) for connections on the punctured formal
disk. Our construction of the local Mellin transforms is analogous to the work of [BE04], and
[Ari08] for the local Fourier transforms. In particular, we mimic the framework given in [Ari08] to
define the local Mellin transforms, as Arinkin’s construction lends itself most easily to calculation.
We also show that the local Mellin transforms induce equivalences between certain categories
of vector spaces with connection and categories of vector spaces with difference operators. Such
equivalences could, in principle, reduce questions about difference operators to questions about
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(relatively more-studied) connections, although we do not do such an analysis in this work. We
end by using the techniques of [GS] to give explicit formulas for calculation of the local Mellin
transforms in the same spirit of the results of [Fan09], [GS] and [Sab08]. An example of our main
result is the calculation ofM(0,∞). We give it here, and it is also found near the end of the paper
as Theorem 11.1:

Let k be an algebraically closed field of characteristic zero. Definitions for R, S, E, and D
can be found in the body of the paper.

Theorem 1.1. Let s and r be positive integers, a ∈ k− {0}, and f ∈ R◦r(z) with f = az−s/r +
o(z−s/r). Then

M(0,∞)(Ef ) ' Dg,

where g ∈ S◦s (θ) is determined by the following system of equations:

f = −θ−1

g = z − (−a)r/s
(
r + s

2s

)
θ1+(r/s)

A necessary tool for the calculation is the formal reduction of differential operators as well
as the formal reduction of linear difference operators. There are considerable parallels between
difference operators and connections, and we refer the reader to [vdPS97] for more details.

1.1 Acknowledgements

The author would like to thank Dima Arinkin for his continuing assistance, support, and encour-
agement of this work.

2. Connections and Difference Operators

2.1 Connections on the formal disk

Definition 2.1. Let V be a finite-dimensional vector space over K = k((z)). A connection on
V is a k-linear operator ∇ : V → V satisfying the Leibniz identity:

∇(fv) = f∇(v) +
df

dz
v

for all f ∈ K and v ∈ V . A choice of basis in V gives an isomorphism V ' Kn; we can then
write ∇ as d

dz +A, where A = A(z) ∈ gln(K) is the matrix of ∇ with respect to this basis.

Definition 2.2. We write C for the category of vector spaces with connections over K. Its objects
are pairs (V,∇), where V is a finite-dimensional K-vector space and ∇ : V → V is a connection.
Morphisms between (V1,∇1) and (V2,∇2) are K-linear maps φ : V1 → V2 that are horizontal in
the sense that φ∇1 = ∇2φ.

2.2 Properties of connections

We summarize below some well-known properties of connections on the formal disk. The results
go back to Turritin [Tur55] and Levelt [Lev75]; more recent references include [BV85], [BBE02,
Sections 5.9 and 5.10], [Mal91], and [vdPS97].

Let q be a positive integer and define Kq := k((z1/q)). Note that Kq is the unique extension
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of K of degree q. For every f ∈ Kq, we define an object Ef ∈ C by

Ef = Ef,q =

(
Kq,

d

dz
+ z−1f

)
.

In terms of the isomorphism class of an object Ef , the reduction procedures of [Tur55] and
[Lev75] imply that we need only consider f in the quotient

k((z1/q))
/(

z1/qk[[z1/q]] +
Z
q

)
where k[[z]] denotes formal power series.

Let Rq be the set of orbits for the action of the Galois group Gal(Kq/K) on the quotient.
Explicitly, the Galois group is identified with the group of degree q roots of unity η ∈ k; the
action on f ∈ Rq is by f(z1/q) 7→ f(ηz1/q). Finally, denote by R◦q ⊂ Rq the set of f ∈ Rq that
cannot be represented by elements of Kr for any 0 < r < q. Thus R◦q is the locus of Rq where
Gal(Kq/K) acts freely.

Proposition 2.3.

(i) The isomorphism class of Ef depends only on the orbit of the image of f in Rq.

(ii) Ef is irreducible if and only if the image of f in Rq belongs to R◦q . As q and f vary, we
obtain a complete list of isomorphism classes of irreducible objects of C.

(iii) Every E ∈ C can be written as

E '
⊕
i

(Efi,qi ⊗ Jmi),

where the Ef,q are irreducible, Jm = (Km, ddz + z−1Nm), and Nm is the nilpotent Jordan
block of size m.

Proofs of the proposition are either prevalent in the literature (cf. [BBE02], [Mal91], [vdPS97])
or straightforward and thus are omitted.

Remark. We refer to the objects (Ef ⊗ Jm) ∈ C as indecomposable objects in C.

2.3 Difference operators on the formal disk

Vector spaces with difference operator and vector spaces with connection are defined in a similar
fashion.

Definition 2.4. Let V be a finite-dimensional vector space over K = k((θ)). A difference
operator on V is a k-linear operator Φ : V → V satisfying

Φ(fv) = ϕ(f)Φ(v)

for all f ∈ K and v ∈ V , with ϕ : Kn → Kn as the k-automorphism defined below. A choice of
basis in V gives an isomorphism V ' Kn; we can then write Φ as Aϕ, where A = A(θ) ∈ gln(K)
is the matrix of Φ with respect to this basis, and for v(θ) ∈ Kn we have

ϕ(v(θ)) = v

(
θ

1 + θ

)
= v

( ∞∑
i=1

(−1)i+1θi

)
.
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We follow the convention of [Pra83, Section 1] to define ϕ over the extension Kq = k((θ1/q)).
Thus for all q ∈ Z+, ϕ extends to a k-automorphism of Kn

q defined by

ϕ
(
v(θ1/q)

)
= v

(
θ1/q

[ ∞∑
i=0

(
−1/q

i

)
θi

])
.

Definition 2.5. We write N for the category of vector spaces with invertible difference operator
over K. Its objects are pairs (V,Φ), where V is a finite-dimensional K-vector space and Φ : V →
V is an invertible difference operator. Morphisms between (V1,Φ1) and (V2,Φ2) are K-linear
maps φ : V1 → V2 such that φΦ1 = Φ2φ.

2.4 Properties of difference operators

In [CF98] and [Pra83], a canonical form for difference operators is constructed. We give an
equivalent construction in the theorem below, which is a restatement of [Pra83, Theorem 8 and
Corollary 9] with different notation so as to better fit our situation.

Theorem 2.6 [Pra83], Theorem 8 and Corollary 9. Let Φ : V → V be an invertible difference
operator. Then there exists a finite (Galois) extension Kq of K and a basis of Kq⊗K V such that
Φ is expressed as a diagonal block matrix. Each block is of the form

Fg =


g

θλ+1 . . .
. . .

. . .


with g ∈ Kq, λ ∈ Z

q , g = a0θ
λ + · · · + aqθ

λ+1, a0 6= 0, and aq defined up to a shift by a0Z
q θ

λ+1.
The matrix is unique modulo the order of the blocks.

Remark. The Fg are the indecomposable components for the matrix of Φ.

Theorem 2.6 allows us to describe the category N in a fashion similar to our description of
the category C. For every g ∈ Kq, we define an object Dg ∈ N by

Dg = Dg,q :=
(
Kq, gϕ

)
.

The canonical form given in Theorem 2.6 implies that we need only consider g in the following
quotient of the multiplicative group k((θ1/q))∗:

K∗q

/(
1 +

Z
q
θ + θ1+(1/q)k[[θ1/q]]

)
. (1)

Let Sq be the set of orbits for the action of the Galois group Gal(Kq/K) on the quotient given
in (1). Denote by S◦q ⊂ Sq the set of g ∈ Sq that cannot be represented by elements of Kr for
any 0 < r < q. As before, S◦q can be thought of as the locus where Gal(Kq/K) acts freely.

Proposition 2.7.

(i) The isomorphism class of Dg depends only on the orbit of the image of g in Sq.

(ii) Dg is irreducible if and only if the image of g in Sq belongs to S◦q . As q and g vary, we
obtain a complete list of isomorphism classes of irreducible objects of N .

(iii) Every D ∈ N can be written as

D '
⊕
i

(Dgi,qi ⊗ Tmi),
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where the Dg,q are irreducible, Tm = (Km, Umϕ), and Um = Im + θNm.

2.5 Notation

At times it is useful to keep track of the choice of local coordinate for C and N , and we denote
this with a subscript. To stress the coordinate, we write C0 to indicate the coordinate z at the
point zero, Cx to indicate the coordinate z − x := zx at a point x 6= 0, and C∞ to indicate the
coordinate ζ = 1

z at the point at infinity. Note that C0, Cx and C∞ are all isomorphic to C, but
not canonically. Similarly we can write N∞ to indicate that we are considering N with local
coordinate at infinity. Since we only work with the point at infinity for N , though, we generally
omit the subscript.

We also have a superscript notation for categories, but our conventions for the categories C and
N are different and a potential source of confusion. Superscript notation for vector spaces with
connection is well-established, and the superscript corresponds to slope (for a formal definition of
slope, see [Kat87]). Thus, for example, we denote by C<1

∞ the full subcategory of C∞ of connections
whose irreducible components all have slopes less than one ; that is, Ef such that −1 < ord(f).

The correspondence to slope makes sense in the context of connections because all connections
have nonnegative slope (i.e. for all Ef we have ord(f) 6 0). For difference operators we have no
such restriction on the order of f , though, and thus a correspondence to slope would be artificial.
The superscripts for difference operators therefore refer to the order of irreducible components
as opposed to the slope. Thus, for example, the notation N>0 indicates the full subcategory of
N of difference operators whose irreducible components Dg have the property that ord(g) > 0.

3. Tate Vector Spaces

3.1 The z-adic topology

Definition 3.1. We define the z-adic topology on the vector space V as follows: a lattice is a
k-subspace L ⊂ V that is of the form L =

⊕
i k[[z]]ei for some basis ei of V over K. Then the

z-adic topology on V is defined by letting the basis of open neighborhoods of v ∈ V be cosets
v + L for all lattices L ⊂ V .

Remark. An equivalent definition for the z-adic topology, without reference to choice of basis, is
given in [Ari08, Section 4.2]. The z-adic topology is also equivalent to the topology induced by
any norm, as described in Lemma 4.4.

For ease of explication, we copy the remaining definitions and results in this section from
[Ari08, Section 5.3]. For more details on Tate vector spaces, see [BD04, Section 2.7.7].

3.2 Tate vector spaces

Definition 3.2. Let V be a topological vector space over k, where k is equipped with the discrete
topology. V is linearly compact if it is complete, Hausdorff, and has a base of neighborhoods of
zero consisting of subspaces of finite codimension. Equivalently, a linearly compact space is the
topological dual of a discrete space. V is a Tate space if it has a linearly compact open subspace.

Definition 3.3. A k[[z]]-module M is of Tate type if there is a finitely generated submodule
M ′ ⊂M such that M/M ′ is a torsion module that is ‘cofinitely generated’ in the sense that

dimk Annz(M/M ′) <∞, where Annz(M/M ′) = {m ∈M/M ′|zm = 0}
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Lemma 3.4.

(i) Any finitely generated k[[z]]-module M is linearly compact in the z-adic topology.

(ii) Any k[[z]]-module of Tate type is a Tate vector space in the z-adic topology.

Proposition 3.5. Let V be a Tate space. Suppose an operator Z : V → V satisfies the following
conditions:

(i) Z is continuous, open and (linearly) compact. In other words, if V ′ ⊂ V is an open linearly
compact subspace, then so are Z(V ′) and Z−1(V ′).

(ii) Z is contracting. In other words, Zn → 0 in the sense that for any linearly compact subspace
V ′ ⊂ V and any open subspace U ⊂ V , we have Zn(V ′) ⊂ U for n� 0.

Then there exists a unique structure of a Tate type k[[z]]-module on V such that z ∈ k[[z]] acts
as Z and the topology on V coincides with the z-adic topology.

4. The norm and order of an operator

4.1 Definition of norm

In the discussion of norms in this subsection we primarily follow the conventions of [CF86], though

our presentation is self-contained. Fix a real number ε such that 0 < ε < 1. For f =
∑
i=k

ciθ
i/q ∈ Kq

with ck 6= 0, we define the order of f as ord(f) := k/q.

Definition 4.1. Let f ∈ K. The valuation | • | on K is defined as

|f | = εord(f)

with |0| = 0.

This is a non-archimedean discrete valuation, and K is complete with respect to the topology
induced by the valuation.

Definition 4.2. Let V be a vector space over K. A non-archimedean norm on V is a real-valued
function || • || on V such that the following hold:

(i) ||v|| > 0 for v ∈ V − {0}.
(ii) ||v + w|| 6max(||v||, ||w||) for all v, w ∈ V .

(iii) ||f · v|| = |f | · ||v|| for f ∈ K and v ∈ V .

Example 4.3. Let fi ∈ K. The function

||(f1, . . . , fn)|| = max|fi|

is a norm on Kn, and Kn is complete with respect to this norm.

Lemma 4.4 [CF86], lemma in Section 2.8. Any two norms || • ||1, || • ||2 on a finite-dimensional
vector space V over K are equivalent in the following sense: there exists a real number C > 0
such that

1

C
|| • ||1 6 || • ||2 6 C|| • ||1.

It follows from Lemma 4.4 that all norms on a finite-dimensional vector space over K induce
the same topology.
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Definition 4.5. Let A : V → V be a k-linear operator. We define the norm of an operator to
be

||A|| = sup
v∈V−{0}

{
||A(v)||
||v||

}
.

Note that ||A|| <∞ if and only if A is continuous ([KF75][Chapter 6, Theorem 1]).

4.2 Invariant norms

The norm of an operator given in Definition 4.5 depends on the choice of the non-archimedean
norm || • ||. To find an invariant for norms of operators, consider the following two norms:

Definition 4.6. The infimum norm is defined as

||A||inf = inf{||A|| : || • || is a norm on V }

and the spectral radius of A is given by

||A||spec = lim
n→∞

n
√
||An||.

Note that A must be continuous to guarantee that the limit defining the spectral radius exists.
It follows from Lemma 4.4 that the spectral radius does not depend on the choice of norm || • ||.
For operators in general the spectral radius is often the more useful invariant, but for the class of
operators we consider (connections, difference operators, and their inverses) the two definitions
coincide and we primarily use the infimum norm.

4.3 Norms of similitudes

Proposition 4.7. Let || • ||1 and || • ||2 be two norms on V . Then for any invertible k-linear
operator A : V → V , we have ||A||1 · ||A−1||2 > 1.

Corollary 4.8. Let A : V → V be invertible and || • || a norm such that ||A|| · ||A−1|| = 1.
Then ||A|| = ||A||inf .

Definition 4.9. Let || • || be a norm on V . An operator A : V → V is a similitude (with respect
to || • ||) if ||Av|| = λ||v|| for all v ∈ V . It follows that ||A|| = λ.

Claim 4.10. If A : V → V is an invertible similitude with ||Av|| = λ||v||, then ||A||inf = λ and
||A−1|| = 1

λ .

4.4 Properties of norms

Given the canonical form of a connection or difference operator, it is quite easy to calculate the
norm. In particular we note that indecomposable connections with no horizontal sections and
indecomposable invertible difference operators are similitudes.

Remark. We introduce here notation to clear up a potentially confusing situation. The issue is
the notation ∇ = d

dz + A for a connection. In particular, at the local coordinate ζ = 1
z the

change of variable gives us ∇ = −ζ2 d
dζ +A(ζ). To emphasize the local coordinate we will use the

notation ∇z (respectively ∇ζ) to indicate that we are writing ∇ in terms of z (respectively ζ).
In particular we have the equalities ∇z = −ζ2∇ζ and z∇z = −ζ∇ζ .

Proposition 4.11. For an indecomposable (V,∇) = (Ef⊗Jm) ∈ C such that∇ has no horizontal
sections,
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(i) ||∇||inf = εord(f)−1.
If ∇ is invertible we also have

(ii) ||∇−1||inf = ε−ord(f)+1.

(iii) For (V,∇) ∈ C0, ||(z∇)−1||inf = ε−ord(f).

(iv) For (V,∇) ∈ C∞, ||(z∇)−1||inf = ||(ζ∇ζ)−1||inf = ε−ord(f).

(v) For (V,∇) ∈ Cx, ||(z∇zx)−1||inf = ε1−ord(f).

Proposition 4.12. For an indecomposable (V,Φ) = (Dg ⊗ Tm) ∈ N ,

(i) ||Φ||inf = εord(g).

(ii) ||(θΦ)−1||inf = ε−ord(g)−1.

4.5 Order of an operator

The order of an operator is a notion closely related to the norm of an operator. It is often more
convenient to work with order as opposed to norm, so we give a brief introduction to order below.

Definition 4.13. Let B : V → V be a k-linear operator and || • || a norm defined on V . Then
the order of B is

Ord(B) = logε ||B||spec,
with Ord(0) :=∞.

Example 4.14. The term “order” is suggestive for the following reason. Given Definition 4.13,
the properties of similitudes, and ∇ an indecomposable connection with no horizontal sections,
the following property holds: Ord(∇) = ` if and only if for all n ∈ Q we have ∇(zn1) = (∗zn+`)1+
higher order terms, where 1 is the identity element of V . Similarly for an indecomposable differ-
ence operator Φ, Ord(Φ) = j if and only if Φ(θn1) = (∗θn+j)1+ higher order terms. Note that
∗ ∈ k− Z if ` = −1 and ∗ ∈ k otherwise.

In the context of the order of an operator, we can state the results of Propositions 4.11 and
4.12 as follows.

Corollary 4.15 to Propositions 4.11 and 4.12. For indecomposable (V,∇) = (Ef ⊗ Jm) in
either C0 or C∞ we have

(i) Ord(∇) = ord(f)− 1, Ord
(
z∇
)

= ord(f), and Ord
(

(z∇)−1
)

= −ord(f).

For indecomposable (V,∇zx) = (Ef ⊗ Jm) ∈ Cx,

(ii) Ord
(
z∇zx

)
= Ord

(
∇zx

)
= ord(f)− 1 and Ord

(
(z∇zx)−1

)
= 1− ord(f).

For indecomposable (V,Φ) = (Dg ⊗ Um) ∈ N

(iii) Ord(Φ) = ord(g) and Ord
(

(θΦ)−1
)

= −ord(g)− 1.

5. Lemmas

5.1 Fractional powers of an operator

Lemma 5.1 Operator-root Lemma. Let A and B be the following k-linear operators on Kq:
A = multiplication by f = jzp/q + o(zp/q), 0 6= j ∈ k, and B = zn d

dz with n 6= 0, p 6= 0, and
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q > 0 all integers. We have Ord(A) = p
q and Ord(B) = n − 1, and we assume that p

q < n − 1.

Then we can choose a pth root of (A+B), (A+B)1/p, such that

(A+B)m = Am +mA(m−1)B +
m(m− 1)

2
Am−2[B,A] + o(z(p/q)(m−1)+n−1)

holds for all m ∈ Z
p where (A+B)m = ((A+B)1/p)pm.

Proof. A full proof is found in [GS, Lemma 4.4].

5.2 Tate Vector Space Lemmas

We also need some lemmas describing our situation in the language of Tate vector spaces. The
proofs are straightforward and are omitted.

Lemma 5.2. Let Z : V → V be a k-linear operator. If Ord(Z) > 0, then Z is contracting

Lemma 5.3. A K-vector space V is of Tate-type if and only if it is finite dimensional.

Lemma 5.4. For any object (V,∇) ∈ C or (V,Φ) ∈ N , V is a Tate vector space.

6. Global Mellin transform

The ‘classical’ Mellin transform can be stated as follows: for an appropriate f the Mellin transform
of f is given by

f̃(η) =

∫ ∞
0

zη−1f(z)dz

and one can check that the following identities hold:

– ηf̃ = −
(̃
z d
dzf
)

– Φf̃ = (̃zf)

where Φ is the difference operator taking f̃(η) to f̃(η + 1).

This leads to the notion of the global Mellin transform for connections on a punctured formal
disk, which was introduced by Laumon in [Lau96]. Below is our definition for the global Mellin
transform, which is equivalent to Laumon’s.

Definition 6.1. The global Mellin transform M : k[z, z−1]〈∇〉 → k[η]〈Φ,Φ−1〉 is a homomor-
phism between algebras defined on its generators by −z∇ 7→ η and z 7→ Φ. Note that we have
[∇, z] = 1 for the domain and [Φ, η] = Φ for the target space, and the homomorphism preserves
these equalities.

As in the case of the Fourier transform, we derive our definition of the local Mellin trans-
form from the global situation. In particular, the local Mellin transform has different ‘flavors’
depending on the point of singularity, so we refer to them as local Mellin transforms.

7. Definitions of local Mellin transforms

Below we give definitions of the local Mellin transforms. To alleviate potential confusion, let
us explain the format we will use for the definitions. We begin by stating the definition in its
entirety, but it is not a priori clear that all statements of the definition are true. We then claim

9



Adam Graham-Squire

that the transform is in fact well-defined and give a proof to clear up the questionable parts of
the definition.

7.1 Definition of M(0,∞)

Definition 7.1. Let E = (V,∇) ∈ C>0
0 . Thus all indecomposable components of ∇ have slope

greater than zero, so each indecomposable component Ef ⊗ Jm has ord(f) < 0. Consider on V
the k-linear operators

θ := −(z∇)−1 : V → V and Φ := z : V → V (2)

Then θ extends to an action of k((θ)) on V , dimk((θ))V < ∞, and Φ is an invertible difference
operator. We write V = Vθ to denote that we are considering V as a k((θ))-vector space. We
define the local Mellin transform from zero to infinity of E to be the object

M(0,∞)(E) := (Vθ,Φ) ∈ N .

Claim 7.2. M(0,∞) is well-defined.

Proof. To prove the claim we must show the following:

(i) θ extends to an action of k((θ)) on V .

(ii) Vθ is finite dimensional.

(iii) Φ is an invertible difference operator on Vθ.

We prove (i) with Lemma 7.3 below. In the proof of Lemma 7.3 we show that (z∇)−1 satisfies
the conditions of Proposition 3.5, and it follows that Vθ is of Tate type. Lemma 5.3 then implies
that Vθ is finite-dimensional, proving (ii). To prove (iii), we first note that Φ is invertible by
construction. To see that Φ is a difference operator, we need to show that Φ(fv) = ϕ(f)Φ(v) for
all f ∈ K and v ∈ V . Since Φ is k-linear and Laurent polynomials are dense in Laurent series,
this reduces to showing that Φ(θi) = ϕ(θi)Φ, which can be proved by induction so long as you

can show that Φ(θ) =
(

θ
1+θ

)
Φ. This last equation is equivalent to (η+ 1)Φ = Φη, which we now

prove. Using the fact that [∇, z] = 1 and the definitions given in (2) we compute

(η + 1)Φ = −z∇z + z = −z(z∇+ 1) + z = z(−z∇) = Φη.

Lemma 7.3. The definition for θ, as given in (2), extends to an action of k((θ)) on V .

Proof. Since all indecomposable components of ∇ have positive slope, ∇ (and z∇) will be in-
vertible and thus θ is well-defined. An action of k[θ−1] = k[−z∇] on V is trivially defined. If
(z∇)−1 : V → V satisfies the conditions of Proposition 3.5 we will also have an action of k[[θ]]
on V . This will give a well defined action of k((θ)) on V . Thus all we need to prove is that
z∇ : V → V satisfies the conditions of Proposition 3.5.

We must show that θ = (z∇)−1 : V → V is continuous, open, linearly compact and contract-
ing. Due to the canonical form for difference operators, we can assume without loss of generality
that ∇ is indecomposable and z∇ is of the form

z
d

dz
+


f

1
. . .
. . .

. . .
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with f ∈ k[z−1/r] and ord(f) = −m/r < 0. Let {ei} be the canonical basis. Since lattices are
linearly compact open subspaces, to prove that (z∇)−1 is open, continuous and linearly compact
it suffices to show that (z∇) and (z∇)−1 map a lattice of the form Lk =

⊕
(z1/r)kk[[z1/r]]ei to a

lattice of the same form. We see that z∇(Lk) =
⊕

(z1/r)k−mk[[z1/r]]ei = Lk−m and (z∇)−1(Lk) =⊕
(z1/r)k+mk[[z1/r]]ei = Lk+m, so (z∇)−1 is open, continuous and linearly compact.

To show that (z∇)−1 is contracting, by Lemma 5.2 we only need to show Ord((z∇)−1) > 0.
By Corollary 4.15, (i), then, it suffices to show that we have ord(f) < 0 for the indecomposable
(V,∇) = Ef⊗Jm. This condition is fulfilled by assumption, since all indecomposable components
have slope greater than zero.

7.2 Definition of M(x,∞)

Definition 7.4. Let E = (V,∇) ∈ Cx such that ∇ has no horizontal sections. Consider on V
the k-linear operators

θ := −(z∇)−1 : V → V and Φ := z : V → V (3)

Then θ extends to an action of k((θ)) on V , dimk((θ))V < ∞, and Φ is an invertible difference
operator. We define the local Mellin transform from x to infinity of E to be the object

M(x,∞)(E) := (Vθ,Φ) ∈ N .

Remark. Since E ∈ Cx, we are thinking of K as k((zx)). This emphasizes that we are localizing
at a point x 6= 0 with local coordinate zx = z − x.

Claim 7.5. M(x,∞) is well-defined.

Proof. To prove the claim we must show the following:

(i) θ extends to an action of k((θ)) on V .

(ii) Vθ is finite dimensional.

(iii) Φ is an invertible difference operator on Vθ.

We prove (i) with Lemma 7.6 below. The proofs of (ii) and (iii) are identical to those found
in the proof of Claim 7.2.

Lemma 7.6. The definition for θ, as given in (3), extends to an action of k((θ)) on V .

Proof. As in the proof of Claim 7.2, all we need is that (z∇)−1 : V → V satisfies the conditions of
Proposition 3.5. Since ∇ has no horizontal sections, ∇ (and thus z∇) will be invertible. First we
show that (z∇)−1 : V → V is continuous, open, and linearly compact. We can assume without
loss of generality that, in canonical form, ∇ is a single indecomposable block. Thus z∇ will have
the form

z
d

dzx
+

z

zx


f

1
. . .
. . .

. . .


with f ∈ k[z

−1/r
x ] and ord(f) = (−s/r) 6 0. It suffices to show that (z∇) and (z∇)−1 map a

lattice of the form Lk =
⊕

(z
1/r
x )kk[[z

1/r
x ]]ei to a lattice of the same form. It is helpful to note

that the leading term of an operator is often the only important term for theoretical calculation.
Thus one can think of z as zx + x, and reduce to considering z∇ as merely x∇ to conclude that

11
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z∇(Lk) = Lk−s−r and (z∇)−1(Lk) = Lk+s+r. It follows that (z∇)−1 is open, continuous and
linearly compact.

To show that (z∇)−1 is contracting, by Lemma 5.2 we need to show that Ord((z∇)) > 0. By
Corollary 4.15, (ii) it suffices to show that we have ord(f) < 1 for the indecomposable (V,∇) =
Ef ⊗ Jm. This condition is trivially fulfilled since the slope of a connection is nonnegative.

7.3 Definition of M(∞,∞)

Note that here we are thinking of K as k((ζ)), since we are localizing at the point at infinity
ζ = 1

z .

Definition 7.7. Let E = (V,∇) ∈ C>0
∞ , thus all irreducible components of ∇ have slope greater

than zero. Consider on V the k-linear operators

θ := −(z∇)−1 : V → V and Φ := z : V → V

Then θ extends to an action of k((θ)) on V , dimk((θ))V < ∞, and Φ is an invertible difference
operator. We define the local Mellin transform from infinity to infinity of E to be the object

M(∞,∞)(E) := (Vθ,Φ) ∈ N .
Claim 7.8. M(∞,∞) is well-defined.

Proof. The proof of Claim 7.8 is almost identical to the proof of Claim 7.2 (with one caveat
mentioned below) and is thus omitted. The caveat is as follows: we note that at infinity, due to
the change of variable from z to ζ, we write the canonical form for an indecomposable ∇z as

−ζ2∇ζ = −ζ2 d
dζ

+ ζ


f

1
. . .
. . .

. . .


with f ∈ k[ζ−1/r]. Thus z∇z = ζ∇ζ will be

−ζ d
dζ

+


f

1
. . .
. . .

. . .

 .

Remark. Note that the local Mellin transforms above give functors to apply to all connections
except for certain connections with regular singularity. More precisely, the only invertible con-
nections for which M(0,∞), M(x,∞), and M(∞,∞) cannot be applied are those connections in C0
and C∞ with slope zero. We conjecture that these connections with regular singularity will map
to difference operators with singularity at a point y 6= ∞. This case is sufficiently small and
different from the situation described above that we do not discuss it in this paper.

8. Definition of local inverse Mellin transforms

8.1 Definition of M−(0,∞).

Definition 8.1. Let D = (V,Φ) ∈ N>0. Thus Φ is invertible and the irreducible components of
Φ have order greater than zero. Consider on V the k-linear operators

z := Φ : V → V and ∇ := −(θΦ)−1 : V → V (4)

12
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Then z extends to an action of k((z)) on V , dimk((z))V <∞, and ∇ is a connection. We write Vz
for V to denote that we are considering V as a k((z))-vector space. We define the local inverse
Mellin transform from zero to infinity of D to be the object

M−(0,∞)(D) := (Vz,∇) ∈ C0.

Claim 8.2. M−(0,∞) is well-defined.

Proof. To prove the claim we must show the following:

(i) z extends to an action of k((z)) on V .

(ii) Vz is finite dimensional.

(iii) ∇ is a connection on Vz.

We prove (i) with Lemma 8.3 below. In the proof of Lemma 8.3 we show that Vz is of Tate
type. Lemma 5.3 then implies that Vz is finite-dimensional, proving (ii). To prove (iii) we must
show that [∇, f ] = f ′ for all f ∈ k((z)). Since ∇ is k-linear and Laurent polynomials are dense
in Laurent series, to show that [∇, f ] = f ′ we merely need to show that [∇, zn] = nzn−1 for all
n ∈ Z. A straightforward calculation shows that [∇, z] = 1, though, and then [∇, zn] = nzn−1

follows by induction.

Lemma 8.3. The definition of z, as given in (4), extends to an action of k((z)) on V .

Proof. Φ is invertible, so an action of k[z−1] is defined. We prove that Φ satisfies the conditions
of Proposition 3.5 to show that an action of k[[z]] is well-defined.

To apply Proposition 3.5, we need to show that z = Φ is continuous, open, linearly compact,
and contracting. First we show that Φ is open, continuous and linearly compact. We can assume
that Φ is indecomposable, so in canonical form (V,Φ) = Dg⊗Tm for some g ∈ Kr with ord(g) =
s/r. Let {ei} be the canonical basis. As in previous proofs, it suffices to show that Φ and Φ−1

map a lattice of the form Lk =
⊕

(θ1/r)kAei to a lattice of the same form (note that here we
are using A = k[[θ1/r]]). Calculation using the canonical form shows that Φ(Lk) = Lk+s and
Φ−1(Lk) = Lk−s, so Φ is open, continuous and linearly compact.

To show that an indecomposable Φ is contracting, by Lemma 5.2 we need to show that
Ord(Φ) > 0. By Corollary 4.15, iii, then, we simply need to show that for (V,Φ) = Dg ⊗ Tm we
have ord(g) > 0. This follows from the assumption that all irreducible components of Φ have
order greater than zero.

8.2 Definition of M−(x,∞).

Definition 8.4. Let D = (V,Φ) ∈ N=0 such that all irreducible components of Φ have order
zero with the same leading coefficient x 6= 0, and Φ− x is invertible. Consider on V the k-linear
operators

z := Φ : V → V and ∇ := −(θΦ)−1 : V → V.

Then the action of z − x = zx is clearly defined, zx extends to an action of k((zx)) on V ,
dimk((zx))V < ∞, and ∇ is a connection. We write Vzx for V to denote that we are considering
V as a k((zx))-vector space. We define the local inverse Mellin transform from x to infinity of D
to be the object

M−(x,∞)(D) := (Vzx ,∇) ∈ Cx.

13
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Claim 8.5. M−(x,∞) is well-defined.

Proof. The proof is similar to the previous proofs and is omitted.

8.3 Definition of M−(∞,∞).

Definition 8.6. Let D = (V,Φ) ∈ N<0. Thus Φ is invertible and the irreducible components of
Φ have order less than zero. Consider on V the k-linear operators

z := Φ : V → V and ∇ := −(θΦ)−1 : V → V

Then ζ = z−1 extends to an action of k((ζ)) on V and dimk((ζ))V < ∞. We write Vζ for V to
denote that we are considering V as a k((ζ))-vector space. We define the local inverse Mellin
transform from infinity to infinity of D to be the object

M−(∞,∞)(D) := (Vζ ,∇) ∈ C∞.

Claim 8.7. M−(∞,∞) is well-defined.

Proof. The fact that all irreducible components of Φ have order less than zero implies that
Ord(Φ) < 0. This in turn implies that Ord(Φ−1) = Ord(ζ) > 0, and the remainder of the proof
is identical to the proof of Claim 8.2.

9. Equivalence of categories

Assuming that composition of the functors is defined, by inspection one can see that M(0,∞)

and M−(0,∞) are inverse functors (and the same holds for the pairs M(x,∞) ,M−(x,∞) and
M(∞,∞), M−(∞,∞)). Thus to show that the local Mellin transforms induce certain equivalences
of categories, all we need is to confirm that the functors map into the appropriate subcategories.
We first prove an important property of normed vector spaces which coincides with properties
of Tate vector spaces. This will be useful in demonstrating the equivalence of categories.

9.1 Normed vector spaces

Our first goal is to prove the following lemma, which will greatly simplify the relationship between
the norm of an operator and its local Mellin transform. First we give some definitions related to
infinite-dimensional vector spaces over k.

Definition 9.1. Let V be an infinite-dimensional vector space over k. A norm on V is a real-
valued function || • || such that the following hold:

(i) ||v|| > 0 for v ∈ V − {0}, ||0|| = 0.

(ii) ||v + w|| 6max(||v||, ||w||) for all v, w ∈ V .

(iii) ||c · v|| = ||v|| for c ∈ k and v ∈ V .

Definition 9.2. An infinite-dimensional vector space V over k is locally linearly compact if for
any r1 > r2 > 0, ri ∈ R, the ball of radius r2 has finite codimension in the ball of radius r1.

Proposition 9.3. Let V be an infinite-dimensional vector space over k, equipped with a norm
|| • || such that V is complete in the induced topology. Let 0 < ε < 1 and Y : V → V be an
invertible k-linear operator such that ||Y || = εα < 1 and ||Y −1|| = ε−α. Define ε̂ := εα. Then

(i) V has a unique structure of a K = k((y))-vector space such that y acts as Y and the norm
|| • || agrees with the valuation on K where |f | = ε̂ord(f) for f ∈ K.

14
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(ii) V is finite-dimensional over K if and only if V is locally linearly compact.

Remark. If V is a Tate vector space then the unique structure of Proposition 9.3, (i) coincides
with that of Proposition 3.5.

Corollary 9.4. Let V be a k((y))-vector space, Z : V → V a similitude, and ||Z|| = ||Z||inf =
εα < 1. Then V can be considered as a k((Z))-vector space (in the spirit of Proposition 9.3 ) and
for any similitude A : V → V we have ||A|| = ||A||Z . In particular, A will be a similitude when
V is viewed as either a k((y))- or k((Z))-vector space.

9.2 Lemmas

Lemma 9.5. The local Mellin transforms map indecomposable objects to indecomposable objects.

Proof. We give the proof for M(0,∞), the proofs for the others are identical. Suppose that
M(0,∞)(V,∇) = (Vθ,Φ) and Vθ has a proper subspace W such that Φ(W ) ⊂ W . Since Vθ is
a k((θ))-vector space we also trivially have that θ(W ) ⊂W . By definition ofM(0,∞), this means
that z(W ) ⊂ W and −(z∇)−1(W ) ⊂ W . In particular, it follows that ∇(W ) ⊂ W , so W is a
proper subspace of V which is ∇-invariant. This implies that if the local Mellin transform of an
object is decomposable, the original object is decomposable as well, and the result follows.

Lemma 9.6. Let E = (V,∇) ∈ C>0
0 , θ, and Φ be as in Definition 7.1. Then M(0,∞)(E) ∈ N>0.

Proof. Due to the canonical decomposition it suffices to prove the lemma when E is indecom-
posable. Then ∇ and z are similitudes, so by Corollary 9.4, θ and Φ are also similitudes. By
Lemma 9.5, Φ is indecomposable, so to prove Lemma 9.6 it suffices to show that ||Φ||θ < 1. By
Corollary 9.4 we have that ||A||z = ||A||θ for any similitude A, and it follows that

||Φ||θ = ||z||z = (ε)1 < 1.

The remaining lemmas have proofs similar to the proof of Lemma 9.6, and are omitted.

Lemma 9.7. Let D = (V,Φ) ∈ N>0 be as in Definition 8.1. Then M−(0,∞)(D) ∈ C>0
0 .

Lemma 9.8. Let E = (V,∇) ∈ Cx be as in Definition 7.4. Then M(x,∞)(E) ∈ N 0.

Lemma 9.9. Let E = (V,∇) ∈ C>0
∞ be as in Definition 7.7. Then M(∞,∞)(E) ∈ N<0.

Lemma 9.10. Let D = (V,Φ) ∈ N<0 be as in Definition 8.6. Then M−(∞,∞)(D) ∈ C>0
∞ .

9.3 Proofs for equivalence of categories

Theorem 9.11. The local Mellin transformM(0,∞) induces an equivalence of categories between
C>0
0 and N>0.

Proof. This follows from Lemmas 9.6 and 9.7, as well as the fact (stated above) that M(0,∞)

and M−(0,∞) are inverse functors.

Theorem 9.12. The local Mellin transformM(x,∞) induces an equivalence of categories between
the subcategory of Cx of connections with no horizontal sections and N 0.

Theorem 9.13. The local Mellin transformM(∞,∞) induces an equivalence of categories between
C>0
∞ and N<0.
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10. Explicit Calculations

In this section we give precise statements and proofs of explicit formulas for calculating the local
Mellin transforms and their inverses. The results and proofs found in this chapter are analogous
to those given for the local formal Fourier transforms in [GS].

In section 11 we state explicit formulas for calculating the local Mellin transforms. In section
12 we give an explicit formula for the local inverse Mellin transform M−(0,∞) and explain how
to derive formulas for the other local inverse Mellin transforms. Section 13 is devoted to proving
the formulas given in section 11.

11. Statement of theorems for local Mellin transforms

11.1 Calculation of M(0,∞)

Theorem 11.1. Let s and r be positive integers, a ∈ k− {0}, and f ∈ R◦r(z) with f = az−s/r +
o(z−s/r). Then

M(0,∞)(Ef ) ' Dg,

where g ∈ S◦s (θ) is determined by the following system of equations:

f = −θ−1 (5)

g = z − (−a)r/s
(
r + s

2s

)
θ1+(r/s) (6)

Remark. We determine g using (5) and (6) as follows. One can think of (5) as an implicit
definition for the variable z. Thus we first use (5) to give an explicit expression for z in terms of
θ1/s. We then substitute this explicit expression into (6) to get an expression for g(θ) in terms
of θ1/s. This same pattern for determining g holds for similar calculations in this section.

When we use (5) to write an expression for z in terms of θ1/s, the expression is not unique
since we must make a choice of a root of unity. More concretely, let η be a primitive sth root of
unity. Then replacing θ1/s with ηθ1/s in our explicit equation for z will yield another possible
expression for z. This choice will not affect the overall result, however, since all such possible
expressions will lie in the same Galois orbit. Thus by Proposition 2.7,(i), any choice of root of
unity will correspond to the same difference operator.

Corollary 11.2. Let E be an object in C>0
0 . By Proposition 2.3, (iii), let E have decomposition

E '
⊕
i

(
Efi ⊗ Jmi

)
where all Efi have positive slope. Then

M(0,∞)(E) '
⊕
i

(
Dgi ⊗ Tmi

)
where Dgi =M(0,∞)(Efi) for all i.

Sketch of Proof. The equivalence of categories given in Theorem 9.11 implies that

M(0,∞)

[⊕
i

(
Efi ⊗ Jmi

)]
'
⊕
i

M(0,∞)

(
Efi ⊗ Jmi

)
.

The equivalence also implies that M(0,∞) will map the indecomposable object Ef ⊗ Jm (as the
unique indecomposable in C0 formed by m successive extensions of Ef ) to an indecomposable
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object Dg⊗Tm (as the unique indecomposable in N formed by m successive extensions of Dg). It
follows that we only need to know howM(0,∞) acts on Ef , which is given by Theorem 11.1.

Remark. Analogous corollaries hold for the calculation of the other local Mellin transforms,
however we do not state them explicitly.

11.2 Calculation of M(x,∞)

Theorem 11.3. Let s be a nonnegative integer, r a positive integer, and a ∈ k − {0}. Let

f ∈ R◦r(zx) with f = az
−s/r
x + o(z

−s/r
x ). Then

M(x,∞)(Ef ) ' Dg,

where g ∈ S◦r+s(θ) is determined by the following system of equations:

f = −
(zx
z

)
θ−1

g = z +

(
xs

2(s+ r)

)
θ

11.3 Calculation of M(∞,∞)

Theorem 11.4. Let s and r be positive integers and a ∈ k − {0}. Then for f ∈ R◦r(ζ) with
f = aζ−s/r + o(ζ−s/r) we have

M(∞,∞)(Ef ) ' Dg,

where g ∈ S◦s (θ) is determined by the following system of equations:

f = −θ−1

g = z − (−a)r/s
(
r + s

2s

)
θ1−(r/s)

12. Statement of theorems for local inverse Mellin transforms

In Chapter 3 we explained that M−(0,∞), M−(x,∞), and M−(∞,∞) are inverse functors for (re-
spectively) M(0,∞), M(x,∞), and M(∞,∞). It follows that explicit formulas for the local inverse
Mellin transforms can be found merely by “inverting” the expressions found in Theorems 11.1,
11.3, and 11.4. We give an example below of what this would look like for M−(0,∞), the other
local inverse Mellin transforms are similar. The proofs are omitted.

Theorem 12.1. Let p and q be positive integers and g ∈ S◦q (θ) with g = aθp/q + o(θp/q), a 6= 0.
Then

M−(0,∞)(Dg) ' Ef ,
where f ∈ R◦p(z) is determined by the following system of equations:

g + a

(
p+ q

2q

)
θ1+(p/q) = z (7)

f = −θ−1 (8)

Remark. We determine f using (7) and (8) as follows. First, using (7) we explicitly express θ
in terms of z1/p. We then substitute this explicit expression for θ into (8) and solve to get an
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expression for f(z) in terms of z1/p.

13. Proof of theorems

Outline

We begin with a brief outline of the proof for Theorem 11.1. Starting with Definition 8.1 of
M(0,∞), we set θ = −(z∇)−1 and Φ = z. For irreducible objects Ef andDg we have∇ = d

dz+z−1f
and Φ = gϕ, and our goal is to use the given value of f to find the expression for g. Since
z = z(1) = Φ(1) = gϕ(1) = g, this amounts to finding an expression for the operator z in terms
of the operator θ. The equation θ = −(z∇)−1 gives an expression for θ in terms of z, and we
use the Operator-root Lemma (5.1) to write an explicit expression for the operator z in terms of
θ. The calculation primarily involves finding particular fractional powers of f , but we must also
keep track of the interplay between the linear and differential parts of ∇ during the calculation;
this interplay accounts for the subtraction of the term (−a)r/s

(
r+s
2s

)
θ1+

r
s from our expression

for g.

The proofs for Theorems 11.3 and 11.4 are similar and thus outlines for their proofs are
omitted. The only change of note is that in the proof of Theorem 11.3 we must also prove a
separate case for when our connection is regular singular (i.e. when ord(f) = 0).

Remark. We give a brief explanation regarding the origin of the system of equations found in
Theorem 11.1. Consider the equations in (2). Let ∇ = z−1f (i.e. as normally defined but without
the differential part) and Φ = g (as normally defined but without the shift operator ϕ). Then
the equations f = −θ−1 and g = z fall out easily. The reason the extra term shows up in (6) is
due to the interaction of the linear and differential parts of ∇, as described above in the outline.

13.1 Proof of Theorem 11.1

Proof. Given θ = −(z∇)−1 and ∇ = d
dz + z−1f , we find that

−θ =

(
z
d

dz
+ f

)−1
. (9)

We wish to express the operator z in terms of the operator θ.

Consider the equation

−θ = f−1, (10)

which is (9) without the differential part. Equation (10) can be thought of as an implicit expres-
sion for the variable z in terms of the variable θ, which one can rewrite as an explicit expression
z = h(θ) ∈ k((θ1/s)) for the variable z. Note that h(θ) is not the same as the operator z. Since
the leading term of f is az−s/r, (10) implies that h(θ) = ar/s(−θ)r/s + o(θr/s). Similar reasoning
and (9) indicate that the operator z will be of the form

z = h(θ) + ∗(−θ)(r+s)/s + o(θ(r+s)/s). (11)

Here the ∗ ∈ k represents the coefficient that will arise from the interaction of the linear and
differential parts of the operator θ. We wish to find the value for *. Let A = f and B = z d

dz ,
then [B,A] = zf ′. From (9) we have −θ = (A+ B)−1, and we apply the Operator-root Lemma
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(5.1) to find

(−θ)
r
s = f

−r
s −

(r
s

)
f

−r
s
−1z

(
Z
zr

)
− 1

2

(r
s

)(
−r
s
− 1
)
f

−r
s
−2zf ′ + o(z(r+s)/r)

= (a−r/sz + . . . ) + a−(r+s)/s
(
−Z
s

+
−(r + s)

2s

)
z(r+s)/r + o(z(r+s)/r)

= a−r/s
(
z + · · ·+ a−1

[
−Z
s

+
−(r + s)

2s

]
z1+(s/r) + o(z1+(s/r))

) (12)

and

(−θ)(r+s)/s = a−1−(r/s)z1+(s/r) + o(z1+(s/r)). (13)

Remark. We use the notation Z
zr to represent d

dz since the operator d
dz : Kr → Kr acts on zn/r

as n
rz for all n ∈ Z.

We can now find the value for * as follows. Substituting the expressions from (12) and (13)
into (11) and making a short calculation gives

∗ = ar/s
[
Z
s

+
r + s

2s

]
and thus

z = h(θ) + ar/s
[
Z
s

+
r + s

2s

]
(−θ)(r+s)/s + o(θ(r+s)/s). (14)

According to (14), let us express ĝ(θ) as

ĝ(θ) = h(θ)− (−a)r/s
[
Z
s

+
r + s

2s

]
θ(r+s)/s + o(θ(r+s)/s). (15)

Since h(θ) = z, by Proposition 2.7, (i), Mĝ will be isomorphic to Mg where g is as given in
Theorem 11.1.

13.2 Proof of Theorem 11.3

Proof. Given θ = −(z∇)−1 and ∇ = d
dzx

+ z−1x f , we write z = zx + x and find that

−θ =

[
(x+ zx)

(
d

dzx
+ z−1x f

)]−1
=

(
zz−1x f + x

d

dzx
+ zx

d

dzx

)−1 (16)

Thus in the expression for −θ−1 there are three terms. We handle the proof in two cases:

Case One: Regular singularity.

In this case we have f = α ∈ k − {0}, s = 0 and r = 1. Because α is only defined up to a
shift by Z we can ignore the d

dzx
term. The remaining portion of the proof is as described in the

remark following the outline in subsection 13. Note that since s = 0, the extra θ term in (11.3)
will vanish.

Case Two: Irregular singularity.

In this situation we have ord(f) < 0. As we shall see in the proof, the only terms in (16) that
affect the final result are those of order less than or equal to -1 (with respect to zx). Specifically,
since zx

d
dzx

has order zero, all terms derived from it in the course of the calculations will fall
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into the o(θ) term. Thus we can safely ignore the term zx
d
dzx

for the remainder of the proof and
consider only

−θ =

(
zz−1x f + x

d

dzx

)−1
. (17)

We wish to express the operator z in terms of the operator θ. The remainder of the proof is
similar to the proof of Theorem 11.1, but we first solve for zx = z − x in terms of θ, then add x
to both sides to get an equation for z alone.

13.3 Proof of Theorem 11.4

Proof. Recall that z = 1
ζ and f ∈ k((ζ)). Given θ = −(z∇)−1 and ∇ = −ζ2 d

dζ + ζf , we find that

−θ =

(
−ζ d

dζ
+ f

)−1
. (18)

We wish to express the operator z in terms of the operator θ. The proof is similar to that of
Theorem 11.1, but first we find an expression for ζ in terms of θ, and then we will invert it.
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