Test 3, Linear Algebra

Dr. Adam Graham-Squire, Fall 2017

34:37

Name:	Key				717
I pledge that I	have neither given no	or received any	unauthorized	assistance on	this exan
		(signature)			

DIRECTIONS

- 1. Don't panic.
- 2. Show all of your work. A correct answer with insufficient work will lose points.
- 3. Read each question carefully and make sure you answer the question that is asked. If the question asks for an explanation, make sure you give one.
- 4. Clearly indicate your answer by putting a box around it.
- 5. Calculators are allowed on this exam, though they are not necessary.
- 6. Make sure you sign the pledge.
- 7. The first 10 questions are required, and I will drop your lowest score of the last three questions.
- 8. Number of questions = 13. Total Points = 60.

1. (6 points) Consider the following set of three polynomials in \mathbb{P}_3 :

$$\{1+t^2+t^3,1-t,(1-t)^2\}$$

Answer the following, and justify your answer:

- (a) Is the set linearly independent?
- (b) Does the set span \mathbb{P}_3 ?
- (c) Is the set a basis for \mathbb{P}_3 ? If not, what could you do to it to make it a basis?

Yes! b/c all columns have a phot

(b) No, 1/2 3 pivots and 4 rows, so I row has reprot

(c) Not a basis! Need to add are more vector that

would be lineary indep. from the vest.

2. (3 points) Find the characteristic polynomial and eigenvalues for the matrix $\begin{bmatrix} 2 & 0 & -2 \\ 1 & 3 & 2 \end{bmatrix}$.

The characteristic polynomial should be written in factored form. Show your work for how you got your answers, but you can use a calculator or computer to check your work.

$$A - \lambda I = \begin{bmatrix} 2-\lambda & 0 & -2 \\ 1 & 3-\lambda & 2 \\ 0 & 0 & 3-\lambda \end{bmatrix}$$

$$\det (A - \lambda I) = (2 - \lambda)(3 - \lambda)(3 - \lambda) + 0 + 0 - (2)(2 - \lambda) - 0 - 0$$

$$= (2 - \lambda)(3 - \lambda)(3 - \lambda) \quad \text{is char. payor.}$$

3. (6 points) Is the matrix $\begin{bmatrix} 2 & 0 & -2 \\ 1 & 3 & 2 \\ 0 & 0 & 3 \end{bmatrix}$ from problem 2 diagonalizable? If so, find D and

P. If not, explain why it is not diagonalizable. Show your work for how you got your answers, but you can use a calculator or computer to check your work.

for
$$\lambda = 3$$
 get $\begin{bmatrix} 0 & 02 \\ 0 & 00 \end{bmatrix} \Rightarrow \begin{cases} \chi_1 + 2\chi_3 = 0 \\ \chi_2 = \chi_1 \\ \chi_3 = \chi_3 \end{cases} \Rightarrow \chi = \begin{bmatrix} -2\chi_3 \\ \chi_2 \\ \chi_3 \end{bmatrix}$

Name: Key

4. (3 points) A is a 6 × 6 matrix with 4 distinct eigenvalues. One eigenspace is two-dimensional. Is A diagonalizable? Your answer should be Yes, No, or Can't Say, and you should explain your reasoning.

Cant say for sure. Dan With 4 distinct

eigenvalues, could have multiplicities 1,1,1,3 or

Tf 1,1,1,3 and one eigenspace of din=2,

When not diagonalizable 5/c needs din=3.

" If 1,1,32, then we need to find due of

eigen space to other and 2 1. If dim=2

then yes diagonalizable. If din = 1, then

No.

 (iv) If f is a function in the vector space V of all real-valued functions on R and if f(t) = 0 for some t, then f is the zero vector in V. False! Need f have f(4/=0) for all values of d. (v) A diagonalizable matrix is always invertible. 	5. (4 points) True or False: If true, briefly explain why. If false, explain why or give a counterexample.
(ii) To find the eigenvalues of A, reduce A to echelon form. Folse! Need to do A-XI and calculate than polynomia! (iii) A change of coordinates matrix is always invertible. The! The columns for a COC matrix and form a bars, there are long mady and spay, so by JMT they are markly. (iv) If f is a function in the vector space V of all real-valued functions on R and if f(t) = 0 for some t, then f is the zero vector in V. False! Need to have fill=0 for all values of the company of	Col A is all of \mathbb{R}^m .
(ii) To find the eigenvalues of A, reduce A to echelon form. False! Need to do A-II and calculate due. pelymanid! (iii) A change of coordinates matrix is always invertible. Time! The columns for a COC matrix all farm a basis, their are line, walls and spar, so by Time frey are weep'ste. (iv) If f is a function in the vector space V of all real-valued functions on R and if f(t) = 0 for some t, then f is the zero vector in V. False! Need to have filt= O for all values of d. (v) A diagonalizable matrix is always invertible. False! Con have I= O be an eigenvalue => Mot sme they	I false! If b= [8] and A= [0], then
(iii) A change of coordinates matrix is always invertible. The! The Columns for a COC matrix of form a bars, there are ling mady and spar, so by TMT they are inceptible. (iv) If f is a function in the vector space V of all real-valued functions on R and if f(t) = 0 for some t, then f is the zero vector in V. False! Need to have fl1=0 for all values of the control of the contr	$Ax=b$ is consisked, but $Ax=\begin{bmatrix} 0\\ 5 \end{bmatrix}$ is not.
(iii) A change of coordinates matrix is always invertible. The! The columns for a COC matrix and form a bars, there are line study, and spor, so by TMT they are drop's to. (iv) If f is a function in the vector space V of all real-valued functions on R and if $f(t) = 0$ for some t, then f is the zero vector in V. False! Need to have $f(t) = 0$ for all values of the contraction of the second of the contraction of the contracti	
(iii) A change of coordinates matrix is always invertible. The! The columns for a COC matrix and form a bars, there are line study, and spor, so by TMT they are dropped. (iv) If f is a function in the vector space V of all real-valued functions on R and if $f(t) = 0$ for some t, then f is the zero vector in V. False! Need to have $f(t) = 0$ for all values of the contraction of the second of the contraction	/ False! Need to do A-II and calculate
The! The Columns for a COC matrix and form a basis, there are ling independent spor, so by TMT they are weep'ste. (iv) If f is a function in the vector space V of all real-valued functions on R and if $f(t) = 0$ for some t, then f is the zero vector in V. False! Need to have $f(t) = 0$ for all values of the columns of	cha. polymonial!
 (iv) If f is a function in the vector space V of all real-valued functions on R and if f(t) = 0 for some t, then f is the zero vector in V. False! Need for have f(t) = 0 for all values of t. (v) A diagonalizable matrix is always invertible. False! Can have I=0 be an eigenvalue => Mot invertible. 	(iii) A change of coordinates matrix is always invertible.
 (iv) If f is a function in the vector space V of all real-valued functions on R and if f(t) = 0 for some t, then f is the zero vector in V. False! Need for have f(t)=0 for all values of the values of the following of the control of the control	basis, there are ling indep and spor, so by IMT frey are weep'ble.
False! Can have 7=0 be an eigenvolve => 16+ invertible	(iv) If \mathbf{f} is a function in the vector space V of all real-valued functions on \mathbb{R} and if
False! Can have 7=0 be an eigenvolve => 16+ invertible	t.
	(v) A diagonalizable matrix is always invertible.
e.g. [020] is diagon! table but not invertible.	False! Can have I=0 be an eigendor => Not invertible
· · · · · · · · · · · · · · · · · · ·	eg. [00] is diagon! table but not invertible.

7. (6 points) Consider the following two systems of equations:

$$5x_1 + x_2 - 3x_3 = 2$$
 $5x_1 + x_2 - 3x_3 = -6$
 $-9x_1 + 2x_2 + 5x_3 = 3$ and $-9x_1 + 2x_2 + 5x_3 = -9$
 $4x_1 + x_2 - 6x_3 = 9$ $4x_1 + x_2 - 6x_3 = -27$

Suppose you know that the first system has a solution. Use this fact to explain why the second system also has a solution without making any row operations.

Let
$$A = \begin{bmatrix} 5 & 1 & -3 \\ -9 & 2 & 5 \\ 9 & 1 & -6 \end{bmatrix}$$

Then
$$Az = \begin{bmatrix} 2 \\ 3 \\ 9 \end{bmatrix}$$
 has a solution \vec{p}
Consider $\vec{p} = 3\vec{p}$. Then

$$A(-3\vec{p}) = -3(A\vec{p}) = -3\begin{bmatrix} 2\\ 3\\ 9 \end{bmatrix} = \begin{bmatrix} -6\\ -9\\ -27 \end{bmatrix}$$

Better answe: • 1st system has solution
$$\Rightarrow$$
 $\begin{bmatrix} 2\\3\\4 \end{bmatrix}$ is in Col A

• Col A a subspace \Rightarrow -3 $\begin{bmatrix} 2\\3\\4 \end{bmatrix}$ = $\begin{bmatrix} -6\\-9\\-27 \end{bmatrix}$ is also in Col

=> second System has a solution.

scalar multiplication. Determine if the set H of all matrices of the form $\begin{bmatrix} a & b & 0 \\ 0 & 0 & f \end{bmatrix}$, where a, b, f are real numbers, is a subspace of $M_{2\times 3}$.
· Dies H have 0? Yes, let 9, 4, f=0
· Do Is by the in H? Check
$\begin{bmatrix} a_1 & b_1 & 0 \\ 0 & 0 & f_1 \end{bmatrix} = \begin{bmatrix} a_2 & b_2 & 0 \\ 0 & 0 & f_2 \end{bmatrix} = \begin{bmatrix} a_1 + a_2 & b_1 + b_2 & 0 \\ 0 & 0 & f_1 + f_2 \end{bmatrix}$
is in H, so yes.
" It chin H? Yes, ble c[0 0 7]
= Ca cb o J
is in A.
Les, it is a subspace.

8. (6 points) $M_{2\times3}$ is the vector space of all 2×3 matrices with normal addition and

+1.5 for naming 3 things, saying Yes.

9. (4 points) Is $\lambda = -1$ an eigenvalue of $\begin{bmatrix} 3 & 2 \\ 2 & 0 \end{bmatrix}$? If yes, find the corresponding eigenspace.

A - (-1I) = A + I $= \begin{bmatrix} 4 & 27 \\ 2 & 1 \end{bmatrix}$

reduces to [2]

50 yes , 7=-1 is an eigenolie!

do $\begin{bmatrix} 2 & 1 \end{bmatrix} \Rightarrow 2n + \frac{n}{2} = 0$ $\chi_{2} \text{ if fee} \Rightarrow \begin{bmatrix} -\frac{1}{2} \times \frac{1}{2} \\ \frac{n}{2} \end{bmatrix} \Rightarrow \chi_{2} \begin{bmatrix} -\frac{1}{2} \times \frac{1}{2} \\ \frac{n}{2} \end{bmatrix}$

 $\Longrightarrow \begin{bmatrix} -1 \\ 2 \end{bmatrix}$

eigenspace is all scala multiples of [-17

70. (6 points) Let
$$A = \begin{bmatrix} 1 & -2 & 3 & 5 & 8 \\ 2 & -4 & 6 & 15 & 21 \\ 3 & -6 & 9 & 15 & 22 \\ -1 & 2 & -3 & 0 & -1 \end{bmatrix}$$
. An echelon form for A is
$$\begin{bmatrix} 1 & -2 & 3 & 5 & 8 \\ 0 & 0 & 0 & 5 & 5 \\ 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

and its reduced echelon form is $\begin{bmatrix} 1 & -2 & 3 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$. Answer the following (Show work

if necessary):

- (a) Find the dimension of and a basis for Nul A.
- (b) Find the dimension of and a basis for Col A.
- (c) Find the dimension of and a basis for Row A.

(d) Find the rank of
$$A$$
.

(c) Find the dimension of and a basis for Row A.

(d) Find the rank of A.

$$\int_{a}^{b} \int_{a}^{b} \int_{a}^{b$$

$$9, -2x_2 + 3x_3 = 0$$

 x_2, x_3 free
 $x_4 = 0$

$$\Rightarrow \begin{cases} 2 \\ 1 \\ 0 \end{cases} + \frac{3}{3} \begin{cases} -\frac{3}{3} \\ \frac{1}{3} \end{cases}$$

You only need to do two of these last three questions, but you can do all of them and I will take your 2 highest scores.

12. (6 points) Let λ be an eigenvalue of an invertible matrix A. Show that λ^{-1} is an eigenvalue of A^{-1} . [Hint: Suppose a nonzero \mathbf{x} satisfies $A\mathbf{x} = \lambda \mathbf{x}$.]

$$A\vec{x} = \lambda\vec{\chi} \qquad \text{for some } \chi$$

$$A \text{ in vertible} \implies A' A\vec{x} = A' (\lambda \vec{x}) \qquad \text{know } \lambda' \neq 0$$

$$\vec{x} = \lambda A' \vec{x} \qquad \text{by.} \quad A \text{ is invertible}$$

$$\vec{x} = \lambda' \vec{x} \qquad \text{by.} \quad A \text{ is invertible}$$

$$\vec{x} = \lambda' \vec{x} \qquad \text{otherwise} \qquad A' = \lambda' \vec{x} \qquad \text{otherwise}$$

$$\vec{x} = \lambda' \vec{x} \qquad \text{otherwise} \qquad A' = \lambda' \vec{x} \qquad \text{otherwise}$$

- 12. (6 points) Let C be the vector space of all continuous functions on the interval [0,1]. Define $T:C\to C$ to be the transformation as follows: for the function f, let T(f) be the antiderivative F of f such that F(0) = 0 (so, for example, $T(x^2) = \frac{x^3}{3}$).
 - (a) Show that T is a linear transformation

(a) Show that
$$T$$
 is a linear transformation
(b) Describe the kernel of T (that is, describe all functions such that $T(f) = 0$).

(a) $T(f_1 + f_2) = \int f_1 + f_2 = \int f_1 + \int f_2$

$$= T(f_1) + T(f_2)$$

Who the region of integration of integration f_1 integration f_2 integration f_1 integration f_2 in f_2

$$T(cf_i) = Q \int cf_i = c \int f_i = c T(f_i)$$

(b) (cervel of T is all functions of such that

T(f) = 0But T(f) = F + 0function + constant of integration

the only function whose antidenative is Zero. is f(x)=0 (that is, the zew function) So $\{Ke(\tau)=\{0\}\}$

13. (6 points) Let $T: V \to W$ be a linear transformation. Let H be a nonzero subspace of V, and let T(H) be the set of images of vectors in H. Then T(H) is a subspace of W, since the range of a linear transformation is always a subspace. Prove that $\dim T(H) \leq \dim H$. [Hint: Every vector in T(H) has the form $T(\mathbf{x})$ for some \mathbf{x} in H. Let $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ be a basis for V, and write \mathbf{x} as a linear combination of the \mathbf{v}_i . Apply T to both sides and use this to argue that a basis for T(H) can have at most n vectors.]

Claim: {T(v,), T(v2), ..., T(vn)} spans T(H). let og be in TLHI. The g=T(n) for some x in V. Sine V,, ..., Vn is a basis for V, know 2= C, V, + C, V, + -- + C, Vn ==== T(x) = c, T(v) + c, T(v) + -+ c, T(v) q is a linear combination of [T(v,),..., T(v,)] and this ST(v,), T(v,) span T(H). Since it is a spanning set, the basis for T(H) can have at moss or vertas => Etantity dim T(H) & n = dian H dom T(H)= H V

Extra Credit (2 points): Let S be the set of all 2×2 matrices A such that A has an eigenvalue of zero. Is S a subspace of $M_{2\times 2}$?

No! [0] + [0] = [16]

No evalue of o

Evalue of o

evalue of o