Quiz 1, Calculus III

Dr. Graham-Squire, Fall 2013

0	Ţ	05	
10	2	11	
		6	لبدياتم

1. (3 points)

State if each of the following are True or False. In either case, give a brief explanation for why (using either words or a calculation).

- (a) If u is orthogonal to w, and v is orthogonal to w, is u+v orthogonal to w?
- (b) If u and v are two nonzero vectors that are not parallel, then $\mathbf{u} \times \mathbf{v} = \mathbf{v} \times \mathbf{u}$.

(a) Yes (The)
$$\vec{u}$$
 \vec{v} \vec{u} \vec{v} \vec{u} \vec{v} \vec{v}

(b) False. In general if
$$\vec{u} \neq \vec{0} \neq \vec{v}$$
 and $\vec{u} \neq k\vec{v}$,
then $\vec{u} \times \vec{v} = -\vec{v} \times \vec{u}$.

2. (3 points)

For each of the following, state if the expression gives a vector, a scalar, or does not exist. Assume that \mathbf{u} , \mathbf{v} , and \mathbf{w} are all nonzero vectors, and c is a scalar.

- (i) $(\mathbf{u} \cdot \mathbf{v})\mathbf{w}$
- (ii) $c(\mathbf{u} \times \mathbf{v})$

(iv)
$$(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}$$
 Scalar

3. (4 points) The following lines in space intersect at a certain point.

Find the direction vectors of each line, and use them to answer the following:

- (a) What is the angle between the two lines?
- (b) There is a plane that is defined by the two lines. Find a vector normal to that plane.

l, hy direction vector
$$\langle 2,0,3\rangle = \vec{q}$$

logo (a) angle between θ is $\cos \theta = \frac{\vec{u} \cdot \vec{v}}{||\vec{u}|| ||\vec{v}||}$
 $\cos \theta = \frac{\vec{v} \cdot \vec{v}}{||\vec{v}|| ||\vec{v}||}$

(6)
$$l, \times l_2 = \frac{ijkij}{20-320}$$

$$= \frac{(0-(612))i+(+3-2)j+(-8-0)k}{(a any 4. Scale multiple)}$$