Test 3 - MTH 1410

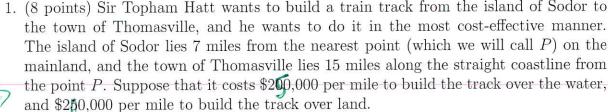
Dr. Adam Graham-Squire, Fall 2017

16:46/

Name:	Key	
I pledg	ge that I have neither given nor received an	y unauthorized assistance on this exam.
	(signature)

DIRECTIONS

- 1. Don't panic.
- 2. Show all of your work and <u>use correct notation</u>. A correct answer with insufficient work or incorrect notation will lose points.
- 3. Clearly indicate your answer by putting a box around it.
- 4. Cell phones and computers are <u>not</u> allowed on this test. Calculators <u>are</u> allowed on the first 4 questions of the test, however you should still show all of your work. No calculators are allowed on the last 3 questions of the test.
- 5. Give all answers in exact form, not decimal form (that is, put π instead of 3.1415, $\sqrt{2}$ instead of 1.414, etc) unless otherwise stated.
- 6. If you need it, the quadratic formula is $\frac{-b \pm \sqrt{b^2 4ac}}{2a}$
- 7. Make sure you sign the pledge above.
- 8. Number of questions = 7. Total Points = 45.



- (a) Draw a diagram of the situation.
- (b) Suppose the track is built directly from the island to the point P, then makes a right-angled turn and goes on land to Thomasville from there. What will be the cost of the track?
- (c) Suppose the track goes directly from Sodor to some point a distance of x miles from P, then makes an obtuse-angled turn to go the rest of the way on land to Thomasville. Use calculus to find at what point x the track should land to make the track as cheap as possible. Round your answer to the nearest 0.01 miles.

2. (6 points) Phineas and Ferb are creating a mountain in their backyard made out of little styrofoam balls. The mountain is cone-shaped, and always has the property that its base radius is 3 times the height of the cone. Assuming they are pouring styrofoam balls on the top of the cone at a rate of 400 ft³/minute, how fast is the radius of the cone growing when the mountain is 50 feet tall? Note: the volume of a cone is $V = \frac{1}{2}\pi r^2 h$.

$$\sqrt{-\frac{1}{3}} \operatorname{Tr}^{2} \left(\frac{r}{3}\right) \sqrt{\frac{r}{3}}$$

$$\frac{dV}{dV} = \frac{T}{q} \cdot 3r^2 \cdot \frac{dr}{dt}$$

Rosal to vergs 3. (6 points) $Use\ calculus$ to calculate the absolute maximum and absolute minimum values for

$$f(x) = \tan(x) - 8\sin(x)$$

on the interval [0, 1.5].

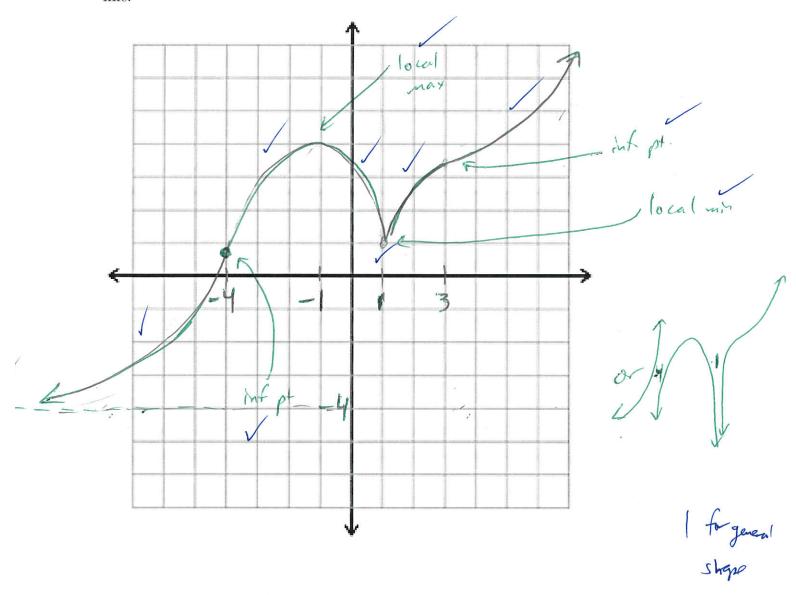
$$8 \cos x = \frac{1}{\cos^2 x}$$

$$=$$
 $\chi = \frac{\pi}{3}$

$$\sqrt{f(\frac{\pi}{3})} = \sqrt{\frac{3}{3} - 8\left(\frac{\sqrt{3}}{2}\right)}$$

- 4. (6 points) Sketch a curve f(x) with the following properties, and label all inflection points and local maximums and minimums (if any exist) on your graph.
 - f(1) = 1
 - $\lim_{x \to (-\infty)} f(x) = -4$
 - $\lim_{x \to \infty} f(x) = \infty$
 - f'(x) > 0 on the intervals $(-\infty, -4), (-4, -1)$, and $(1, \infty)$.
 - f'(x) < 0 on the interval (-1, 1).
- \bigvee f''(x) > 0 on the intervals $(-\infty, -4)$ and $(3, \infty)$.
 - $\wedge \bullet f''(x) < 0$ on the intervals (-4,1) and (1,3).

Note: It is possible to draw this curve with a vertical asymptote or without, either is fine.



- 1 if graph is good but not labeled

$$L(x) = f(p) + f'(p)(x-p) / \sqrt{2}$$

$$L(26) = 5 + \frac{1}{10}(26-25)$$

$$= 5 + 0.1 = 5.17$$

$$f(x) = \frac{1}{2\sqrt{x}}$$

$$f(p) = \sqrt{25} = 5$$

6. (8 points) (a) For the function $h(x) = x \cdot e^x$, calculate the interval(s) where h is increasing, where h is decreasing, and where h has any local maximums and/or minimums. If it has any local extrema, explain whether/which ones are maximums and which are minimums.

$$h'(x) = x - e^{x} + e^{x} = (x+1)e^{x}$$

$$0 = (x+1)e^{x} = x = -1$$

$$h'(-4) = -1$$

$$h'(0) = +1$$

decreasing on
$$(-\infty, -1)$$

in creasing on $(-1, \infty)$
local min at $x = -1$

(b) For the function $h(x) = x \cdot e^x$, calculate the interval(s) of concavity and the x-value(s) for inflection points, if any exist.

$$h''(x) = (x+1)e^{x} + 1\cdot e^{x} \Rightarrow (x+2)e^{x}$$

$$0 = (x+2)e^{x} \Rightarrow x = -2$$

$$h''(-3) = -4$$

$$h''(0) = +4$$

Concave down on
$$(-\infty, -2)$$

up on $(-2, \infty)$

inf. pt at $x = -2$

7. (6 points) Calculate the most general antiderivative of

$$f(x) = \frac{x^6 + x^2}{x^3} + \frac{1}{\sqrt{1 - x^2}}$$

$$f(x) = \frac{x^{6}}{n^{3}} + \frac{x^{2}}{n^{2}} + \sqrt{1-x^{2}}$$

$$f(x) = x^{3} + \frac{1}{x} + \sqrt{1-x^{2}}$$

$$f(x) = \int (x^{3} + \frac{1}{x} + \sqrt{1-x^{2}}) dx$$

$$- \int \frac{x^{4}}{4} + \ln|x| + \arcsin(x) + C$$

$$0.5$$

Extra Credit (up to 2 points) You can choose either 1 point extra credit or 2 points extra credit. If you choose 1 point you are guaranteed to get the 1 point. If you choose 2 points, though, and more than 2 students (including yourself) choose 2 points, though, everyone who chooses 2 points (including yourself) gets nothing.