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I pledge that I have neither given nor received any unauthorized assistance on this exam.
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DIRECTIONS

. Don’t panic.

Show all of your work and use correct notation. A correct answer with insufficient
work or incorrect notation will lose points.

Clearly indicate your answer by putting a box around it.

Cell phones and computers are not allowed on this test. Calculators are allowed on
the first 4 questions of the test, however you should still show all of your work. No
calculators are allowed on the last 3 questions of the test.

Give all answers in exact form, not decimal form (that is, put 7 instead of 3.1415, v/2
instead of 1.414, etc) unless otherwise stated.
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If you need it, the quadratic formula is

Make sure you sign the pledge above.

Number of questions = 7. Total Points = 45.



1. (8 points) Sir Topham Hatt wants to build a train track from the island of Sodor to
the town of Thomasville, and he wants to do it in the most cost-effective manner.
The island of Sodor lies 7 miles from the nearest point (which we will call P) on the
mainland, and the town of Thomasville lies 15 miles along the straight coastline from

« the point P. Suppose that it costs $2g),000 per mile to build the track over the water,

= -/ and $2§0,000 per mile to build the track over land.

(a) Draw a diagram of the situation.
(b) Suppose the track is built directly from the island to the point P, then makes a
right-angled turn and goes on land to Thomasville from there. What will be the cost
of the track?
(¢) Suppose the track goes directly from Sodor to some point a distance of  miles from
P, then makes an obtuse-angled turn to go the rest of the way on land to Thomasville.

Use calculus to find at what point x the track should land to make the track as cheap
as possible. Round your answer to the nearest 0.01 miles.
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2. (6 points) Phineas and Ferb are creating a mountain in their backyard made out of
little styrofoam balls. The mountain is cone-shaped, and always has the property that M '
its base radius is 3 times the height of the cone. Assuming they are pouring styrofoam m
balls on the top of the cone at a rate of 400 ft*/minute, how fast is the radius of |47 e T
the cone growing when the mountain is 50 feet tall? Note: the volume of a cone is el )
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3. (6 points) Use calculus to calculate the absolute maximum and absolute minimum

values for |
f(z) = tan(x) — 8sin(z) (y
on the interval [0, 1.5]. - 7 .y PR

{/;L Se¢ Px — ¥ o3 X / sz.i”
O‘ -—‘-—-——; — K o5 /

W2 Le. /V{(«: -g(g - ”520



4. (6 points) Sketch a curve f(z) with the following properties, and label all inflection
points and local maximums and minimums (if any exist) on your graph.

o f(1)=1
) 11(1}1)]“(:1:):—4

* g fle)= oo
e f'(x) > 0 on the intervals (—oo, —4), (—4, —1), and (1, c0).
e f'(x) <0 on the interval (—1,1).

\/ e f"(x) > 0 on the intervals (—oo, —4) and (3, o).

/\ o f"(z) <0 on the intervals (—4, 1) and (1, 3).

Note: It is possible to draw this curve with a vertical asymptote or without, either is
fine.
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No Calculator Name: )5&7

5. (5 points) Use linearization to approximate v/26
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6. (8 points) (a) For the function h(z) = z-e”, calculate the interval(s) where h is increas- .
ing, where h is decreasing, and where h has any local maximums and/or minimums. ==
If it has any local extrema, explain whether/which ones are maximums and which are

minimums. 5 P
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(b) For the function h(z) = x - e®, calculate the interval(s) of concavity and the z-

value(s) for inflection points, if any exist.
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7. (6 points) Calculate the most general antiderivative of

_1:6+$2 il
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Extra Credit(up to 2 points) You can choose either 1 point extra credit or 2 points
extra credit. If you choose 1 point you are guaranteed to get the 1 point. If you choose 2
points, though, and more than 2 students (including yourself) choose 2 points, though,
everyone who chooses 2 points (including yourself) gets nothing.
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