Quiz 6, Abstract Algebra

	.D1. (aranam-oquire, opring 2010	1207
Name:	Key		12:43
	/		D 20-25

1. (4 points) Let G be an Abelian group and |G| = 100.

(a) What are all possible \mathbb{Z}_n groups (or direct products of \mathbb{Z}_n groups) that G could be isomorphic to?

(b) If you knew G is not cyclic and has exactly 2 elements of order 4, does that tell you which group G is isomorphic to? If not, which groups could you eliminate? Justify your answer.

(a) 2, 02, o 2, 02, 02, o 2, 02, 02, 02,00000 allow one overlap, then -0.5 for each two (5) Not wdie = Not Zy Blue = Z100 2 elevents of sole 4 => 1/4 @ 2, 025 16/1 have no elements of order 4 where I has (1,0,0) and (3,0,0) and /(1,0,0)=4, 1(3,0,0)=4, and all other

Clements have order two

(v si wasi es)

- 2. (3 points) The mapping $\phi: \mathbb{Z}_{20} \to \mathbb{Z}_8$ given by $\phi(x) = 2x$ is a homomorphism.
 - (a) Is ϕ an onto mapping (that is, are all 8 elements of \mathbb{Z}_8 be in the image of ϕ)?
 - (b) Calculate the order of the kernel (that is, find $|Ker\phi|$).
 - (c) If all you knew was $\alpha: G \to H$ was a homomorphism, |G| = 20, and |H| = 8, could you tell whether or not α was onto? Explain why or why not.

(a) $\phi(x) = 2x$ will be even for all elements in the Hinge of ϕ \Rightarrow ϕ is not onto (doesn't hit any odd #5)

(b) Since ϕ maps to $fo, 2, 4, 6f \in \mathbb{Z}_8$, we have

that $|\phi(G)| = 4$, so $\frac{|\mathcal{D}_{10}|}{|\phi(G)|} = \frac{2v}{4} = 5$ & is a 5-to-1 mapping -> | Ker 4 |= 5 (c) Yes, you would know it cannot be onto b/c 16(G)1/12/21 and 16(G)//12/81 => /9(G)// 20 and /4(G)//8 >> /4(G)/ divides gcd (20,8)=4 => 14(G) | + 8 So the image of \$ be all of By = not onto.

- 3. (3 points) Let G be the group of all polynomial functions with real coefficients, with addition as the group operation.
 - (a) Prove that the derivative mapping $d: G \to G$ given by d(f) = f' is a homomorphism.
 - (b) What is the kernel of d?

(b) Ker (d) is all constant functions because
$$d(c) = 0 \quad \text{and} \quad 0 \text{ is identify.}$$