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«1.-(4 points) Let G be an Abelian group and |G| = 100.. w1,

(a) What are all possﬂnle Zp groups (or direct products of Zn groups) that G could be
1somorph1c to?

| (b) If you kiew G is not cyclic and has exactly 2 elements of order 4, does that tell you which
gToup G is 1somorphlc to? If not, which groups could you ehmmate’? Justify your answer.
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2. (3 points) The mapping ¢ : Zoy — Zs given by ¢(z) = 2z is a homomorphism.
{(a) Is ¢ an onto mapping (that is, are all 8 elements of Zg be in the image of ¢)?

(b) Calculate the order of the kernel (that is, find [Kerg|).
(c) If all you knew was o : G — H was a homomorphism, |G| = 20, and |H| = 8, could you
tell whether or not o was onto? Explain why or why not. o
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3. (3 points) Let G be the group of all polynomial functions with real coefficients, with addition
as the group operation.

(a) Prove that the derivative mapping d : G — G given by d(f) = f' is a homomorphism.
(b) What is the kernel of d?
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