Quiz 5, Abstract Algebra Dr. Graham-Squire, Spring 2016

1. (3 points) Let H be a subgroup of G, and suppose that H is also a subgroup of Z(G) (where Z(G) is the center of G, that is all $g \in G$ that commute with everything in G). Prove that H is normal in G.

A subgroup of Z(G) => hx=xh for all x & G and h & H.

Then the coses XH = {xh | heH} = {hx | heH} = Hx

of the carte

Thus for all x ∈ G, SCH = HSC

⇒ # d G.

1.5 for det. of Normal (or N.S.T.)

2. (4 points) (a) Describe the elements of the factor group Z₄ ⊕ Z₄/⟨(1,2)⟩.
(b) Z₄ ⊕ Z₄/⟨(1,2)⟩ is isomorphic to either Z₄ or Z₂ ⊕ Z₂. Which one is it? Explain your reasoning.

(a)
$$\angle (1,2) \rangle = \sum (1,2), (7,0), (3,2), (0,0) \} = 14$$

So elements of $D_y \oplus D_y / \angle (1,2) \rangle$ are

$$(0,1) + H = \{(1,3),(2,1),(3,3),(0,1)\}$$

$$(0,2) + H = \{(1,0),(2,2),(3,0),(0,2)\}$$

$$(0,3) + H = \{(1,1),(2,3),(3,1),(0,3)\}$$

(b) So
$$\angle (0,1)+H > = \{(0,1)+H, (0,2)+H, (0,3)+H, H\}^{\sqrt{2}}$$

generates the factor grays $\Rightarrow 2 \boxed{24}$

3. (3 points) Recall that \mathbb{R}^* is the group with elements $\mathbb{R} - \{0\}$ and binary operation multiplication. Also, let \mathbb{R}^+ be the group of positive real numbers.

Prove that $\mathbb{R}^* = \mathbb{R}^+ \times \{-1, 1\}$.

(Recall that $G = H \times K \Leftrightarrow H, K$ -are normal in $G, H \cap K = \{e\}$ and G = HK)

12t and 5

Since IR* is Abelien, all subgroups are normal.

 $(R^{+} 1 - 1, 1) = \{1\} = \{1\} = \{e\}$ b/c $-1 \notin R^{+}$ and $1 \in R^{+}$ b/c $i \neq i \in P^{-}$ pointing.

Let $x \in \mathbb{R}^{+}$. If x > 0, $x = x \cdot 1$

50 112* =(1R*)(5-1,13)

=> 12*= 12+x {-1,13