$\operatorname{Quiz}_{\scriptscriptstyle Dr. \operatorname{Graham-Squire, Spring 2016}} \operatorname{Algebra}$

Name: _

1. (3 points) Let H be a subgroup of G, and suppose that H is also a subgroup of Z(G) (where Z(G) is the center of G, that is all $g \in G$ that commute with everything in G). Prove that H is normal in G.

2. (4 points) (a) Describe the elements of the factor group $\mathbb{Z}_4 \oplus \mathbb{Z}_4 / \langle (1,2) \rangle$.

(b) $\mathbb{Z}_4 \oplus \mathbb{Z}_4/\langle (1,2) \rangle$ is isomorphic to either \mathbb{Z}_4 or $\mathbb{Z}_2 \oplus \mathbb{Z}_2$. Which one is it? Explain your reasoning.

3. (3 points) Recall that \mathbb{R}^* is the group with elements $\mathbb{R} - \{0\}$ and binary operation multiplication. Also, let \mathbb{R}^+ be the group of positive real numbers.

Prove that $\mathbb{R}^* = \mathbb{R}^+ \times \{-1, 1\}.$

(Recall that $G = H \times K \Leftrightarrow H \cap K = \{e\}$ and G = HK. You can assume \mathbb{R}^+ and $\{-1, 1\}$ are normal in \mathbb{R}^*)