Quiz 2, Abstract Algebra Dr. Graham-Squire, Spring 2016

Name:

6 points.

1. The Fundamental Theorem of Cyclic Groups states the following: "Every subgroup of a cyclic group is cyclic. Moreover, if $|\langle a \rangle| = n$, then the order of any subgroup of $\langle a \rangle$ is a divisor of n; and, for each positive divisor k of n, the group $\langle a \rangle$ has exactly one subgroup of order k-1namely, $\langle a^{n/k} \rangle$."

Use an example to verify the Fundamental Theorem of Cyclic Groups-that is, find an example group that illustrates the properties that the Fundamental Theorem is talking about. Your example group should be large enough to be a good illustration, but small enough that it is manageable.

212 = Fo, 1,2,-, 113 which is cyclic are 503 = 207 {0,63 - <6> 80, 4,83 = 24> {0,3,6,9} = <37 50,2,4,-,103 = 22> 50,1,--, 113=<17 and 3 is a divisor of 12, some for Here 124>1=3 217 has exactly one subgroup of order 6,

subgrap <2>= <1. 12>= <a > >

2. You have proved previously (in a homework assignment) that the intersection of two subgroups is a subgroup, but what about the *intersection* of two subgroups? Prove or disprove the following: "If H and K are subgroups of a group G, then $H \cup K$ is a subgroup of G".

2 port

3. For any element p in a group G, prove that $\langle p \rangle$ is a subgroup of the centralizer of p (recall that the centralizer of p, C(p), is the set of all elements in G that commute with p).

2 pouch.

Two step:
$$p \in \mathcal{L}_p \nearrow$$
, so $\mathcal{L}_p \nearrow$ is monempty.
Note that $p''(p) = p(p'') = p'' + far all n, so $\mathcal{L}_p \nearrow C(\mathcal{L}_p)$$

for all p. Let $a,b \in \langle p \rangle$, then $a = p^n$, $b = p^n$ for some $m,n \in \mathbb{Z}$.

Then $ab = p^{n+m} \in \angle p > 50$ $\angle p > is divsed.$

Let $a \in \langle p \rangle$ then $a = p^n$ for some $n \in \mathbb{Z}$. Let $b = p^n = p^n$.

The $ab = p^n p^{-n} = p^n = p^n$

(could also just point out that $(p) \in ((p), and (p))$;)
a subgroup by previous theorem proved in class.)