Quiz 2, Abstract Algebra Dr. Graham-Squire, Spring 2016

Name:	

1. The Fundamental Theorem of Cyclic Groups states the following: "Every subgroup of a cyclic group is cyclic. Moreover, if $|\langle a \rangle| = n$, then the order of any subgroup of $\langle a \rangle$ is a divisor of n; and, for each positive divisor k of n, the group $\langle a \rangle$ has exactly one subgroup of order knamely, $\langle a^{n/k} \rangle$."

Use an example to verify the Fundamental Theorem of Cyclic Groups-that is, find an example group that illustrates the properties that the Fundamental Theorem is talking about. Your example group should be large enough to be a good illustration, but small enough that it is manageable.

2. You have proved previously (in a homework assignment) that the intersection of two subgroups is a subgroup, but what about the *union* of two subgroups? Prove or disprove the following: "If H and K are subgroups of a group G, then $H \cup K$ is a subgroup of G".

3. For any element p in a group G, prove that $\langle p \rangle$ is a subgroup of the centralizer of p (recall that the centralizer of p, C(p), is the set of all elements in G that commute with p). Note: make sure you confirm that $\langle p \rangle$ is a subset of C(p).